• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra

algebra

Mensagempor rcpn » Sex Out 07, 2016 11:01

Sabendo que x - 2 é o maior divisor comum de A=x² - 4x + 4, B=2x² - 8 e C= mx² + px, calcule o valor numérico de p + 2m.

Particularmente achei essa questão um pouco estranha porque a fatoração do terceiro grupo C= mx² + px, eu entendo ser: x(mx + p), mas não entendi o mdc aqui. Podem me ajudar?
rcpn
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 08, 2014 10:46
Formação Escolar: ENSINO MÉDIO
Área/Curso: formação geral
Andamento: formado

Re: algebra

Mensagempor adauto martins » Sex Out 07, 2016 12:09

x=2 é raiz dos polinomios A(x),B(x),C(x)\Rightarrow m.{2}^{2}+p.2=0\Rightarrow 2m+p=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}