Na adição sendo u+v=(x{}_{1}.x{}_{2},y{}_{1}.y{}_{2}), o axioma u+0=u e u+(-u)=0 serão satisfeitas?
Sempre encontro gente botando no elemento neutro (0,0), mas outras pessoas botam números para ``forçar´´ que o axioma esteja certo.
Tipo
(x{}_{1},y{}_{1})+(0,0)=(x{}_{1},y{}_{1})=
(0,0)\neq(x{}_{1},y{}_{1})
e já não seria espaço vetorial nesse axioma
Mas já vi
(x{}_{1},y{}_{1})+(1,1)=(x{}_{1},y{}_{1})=(x{}_{1},y{}_{1})=(x{}_{1},y{}_{1})
Só que no próximo axioma
u+(-u)=0, ele falharia
(x{}_{1},y{}_{1})+(-x{}_{1},-y{}_{1})=(1,1)
=(-x{}^{2}{}_{1},-y{}^{2}{}_{1})\neq(1,1)
Então, qual é o modo certo de fazer?

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)