1) seja a transformação linear f: R³?R²,f(x,y) = (2x-y),x+3y,-2y) e as bases A = {-1,1),(2,1)} e B = {(0,0,1),(0,1,1)
,(1,1,0)}. Determinar:
a) a matriz de f nas bases A e B
b) a matriz canônica de f
c) F (3,4) usando as matrizes obtidas em a),b) e c)


,entao
,onde C esta na base canonica ,pois
,onde
,é a matriz identidade e a matriz-canonica de ordem 3...
...
...
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)