• Anúncio Global
    Respostas
    Exibições
    Última mensagem

escalonamento

escalonamento

Mensagempor nandooliver008 » Ter Set 16, 2014 15:10

Algem consegue resolver o sistema abaixo usando Gauss-Jordan? tentei varias vezes mas abaixo do primeiro pivo sempre da 0 e não consigo calcular o 2 pivo.


{x}_{1} - {x}_{2} + 3{x}_{3} + 2{x}_{4} = 1

- {x}_{1} + {x}_{2} - 2{x}_{3} + {x}_{4} = -2

2{x}_{1} - 2{x}_{2} + 7{x}_{3} + 7{x}_{4} = 1
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: escalonamento

Mensagempor adauto martins » Qua Out 01, 2014 11:49

tomemos a matriz completa Ã=\begin{pmatrix}
   1 & -1 & 3 & 2 & 1 \\ 
   -1 & 1 & -2 & 1 & -2 \\
   2 & -2 & 7 & 7 & 1 \\ 
 
   
\end{pmatrix}
escalonando-a,teremos:
\begin{pmatrix}
   1 & -1 & 3 & 2 & 1 \\ 
   0 & 0 & 1 & 3 & -1 \\
   2 & -2 & 7 & 7 & 1 \\ 
 
   
\end{pmatrix},
\begin{pmatrix}
   1 & -1 & 3 & 2 & 1 \\ 
   0 & 0 & 1 & 3 & -1 \\
   0 & 0 & 1 & 3 & -1 \\ 
 
   
\end{pmatrix},
\begin{pmatrix}
   1 & -1 & 3 & 2 & 1 \\ 
   0 & 0 & 1 & 3 & -1 \\
   0 & 0 & 0 & 0 & 0 \\ 
 
   
\end{pmatrix},
reescrevendo em sistema,teremos:
x1-x2+3.x3+2.x4=1,
x3+3.x4=-1...tomando x4=a,x3=b tais q. a,b reais...
dai resolve-se o problema,dependentes dos valores a,b reais...conclui-se q. tem-se infinitas soluçoes
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: escalonamento

Mensagempor nandooliver008 » Qua Out 01, 2014 12:03

muito obrigado.
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.