por Razoli » Dom Set 14, 2014 20:36
Determinar se as funções

são Linearmente Independentes?
-
Razoli
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Abr 06, 2013 15:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: cursando
por e8group » Seg Set 15, 2014 09:47
Como de costume , tomemos a combinação linear nula e mostremos que todos escalares são nulo .

. (* ) Como

então dividimos (1) por exp(x) e obtemos

o que nos dá

que é constante .
Passando ao limite com

, resulta que

, logo

.
Temos então que

(4) . Agora usamos o mesmo argumento (*) e restante é análogo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- TERMO INDEPENDENTE DE X
por hudeslan » Seg Ago 17, 2009 19:28
- 2 Respostas
- 21912 Exibições
- Última mensagem por Molina

Seg Ago 17, 2009 23:18
Estatística
-
- termo independente
por cristina » Sex Ago 20, 2010 23:47
- 2 Respostas
- 4503 Exibições
- Última mensagem por cristina

Dom Ago 22, 2010 10:48
Binômio de Newton
-
- Probabilidade independente
por bianca12 » Qua Out 30, 2013 22:06
- 0 Respostas
- 1266 Exibições
- Última mensagem por bianca12

Qua Out 30, 2013 22:06
Probabilidade
-
- acerto independente
por dandara » Dom Abr 24, 2016 11:28
- 0 Respostas
- 4694 Exibições
- Última mensagem por dandara

Dom Abr 24, 2016 11:28
Probabilidade
-
- Probabilidade Condicionada/ Acontecimento Independente
por Mcatia » Qua Nov 10, 2010 16:25
- 5 Respostas
- 4213 Exibições
- Última mensagem por fraol

Ter Abr 17, 2012 22:18
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.