• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Subespaços vetoriais] Interseção

[Subespaços vetoriais] Interseção

Mensagempor Tathiclau » Dom Dez 15, 2013 22:30

Imagem.jpg
Imagem da questão
Pessoal quero apenas a letra b. Obrigada :y:
Tathiclau
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Dez 11, 2013 23:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [Subespaços vetoriais] Interseção

Mensagempor e8group » Ter Dez 17, 2013 00:16

Outra forma de escrever W ,

W = \{ p \in P_4(\mathbb{R} )  : p  =  a(1+ x^4) + c(x^2+x^4) + d(x^3-x^4) \} . Daí é evidente que o conjunto A= \{1+x^4 ,x^2+x^4,x^3-x^4 \} gera W .Quanto a sua independência linear ,é fácil verificar ,deixo p/vc .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}