Determine a matriz do operador T : R² -> R² relativamente a base a = (1, 1), (-1, 1),
sabendo que T(-7, 4) = (2, 3) e T(6, 1) = (4, 5).

. A primeira coisa que deve se perguntar o conjunto
é L.I. ? R. sim é L.I. e não é necessário tomar combinação linear nula, basta notar que eles não são múltiplos escalares . Segundo , através de um resultado da A.L. vide viewtopic.php?f=117&t=13470 , podemos afirmar que
constitui uma base ordenada para o
.Como sabemos o que o operador
faz com os vetores de B ,é possível determina-lo (basta reescrever (x,y) como combinação linear dos vetores de B e em seguida aplicar o operador T e usar a linearidade dele ) .
,como ele é , então deverás escrever
e
como combinação linear dos vetores de
.
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, mas negativo pois tem de ser no quarto quadrante. Se
, então
. Como módulo é um:
.
.