• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Vetores - teoria] Quais afirmações são verdadeiras?

[Vetores - teoria] Quais afirmações são verdadeiras?

Mensagempor manoelcarlos » Seg Set 30, 2013 23:51

Pessoal, estou com um problemão. Tenho uma lista de exercícios pra responder com base em pesquisas na internet. Depois de dar uma googlada, JURO, só consegui encontrar uma das afirmações e mesmo assim não tenho certeza de está correta. Alguém pode me ajudar com isso?

Marque as alternativas cuja afirmação é verdadeira:

Os vetores (1,0) e (0,1) formam uma base ortonormal

Dois vetores coplanares são linearmente independentes (F)

A soma de dois vetores opostos de mesma direção e mesmo módulo é o vetor nulo

Dois vetores linearmente independentes de módulos iguais a 1 formam uma base ortonormal

A soma de quatro vetores do espaço pode ser igual a um dos vetores envolvidos no cálculo
manoelcarlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Ago 21, 2013 18:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Vetores - teoria] Quais afirmações são verdadeiras?

Mensagempor Russman » Qua Out 02, 2013 00:24

manoelcarlos escreveu:Os vetores (1,0) e (0,1) formam uma base ortonormal


Verdadeira, pois o conjunto é LI, ortogonal e de módulo 1.

manoelcarlos escreveu:Dois vetores coplanares são linearmente independentes (F)


Depende. Os veotres (1,0) e (0,1) são coplanares e LI. Já (1,2) e (2,4) também são coplanares porém LD.

manoelcarlos escreveu:A soma de dois vetores opostos de mesma direção e mesmo módulo é o vetor nulo


Verdadeiro. O vetor v é oposto em sentido, igual em direção e módulo ao vetor -v e v+(-v) = 0 [vetor nulo] .

manoelcarlos escreveu:Dois vetores linearmente independentes de módulos iguais a 1 formam uma base ortonormal


Verdadeiro. Para o conjunto ser base os vetores devem ser LI entre si. Sendo ortogonais são também LI. Se forem de módulo 1 então são ortonormais também.

manoelcarlos escreveu:A soma de quatro vetores do espaço pode ser igual a um dos vetores envolvidos no cálculo


Não entendi a afirmação. Que espaço? Que cálculo?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.