• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes] Duvida

[Matrizes] Duvida

Mensagempor Knoner » Dom Set 29, 2013 19:49

Olá, estou em duvida na seguinte questão:

Sejam A, B, e Mn (R) e a £ R, mostre que:

a)(A^t)^t = A
b)(\alphaA)^t = \alphaA^t, onde \alpha ? K
c)Se n=m, (A.B)^t = B^T . A^T
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: [Matrizes] Duvida

Mensagempor e8group » Seg Set 30, 2013 21:52

Item a ) Utilizando a notação [A]_{ij} = a_{ij} para designar o termo geral da matriz e lembrando da definição de transposição de matrizes : [A^t]_{ij} = [A]_{ji} = a_{ji} (**) , temos que
[(A^t)^t]_{ij} =  [A^t]_{ji} = [A]_{ij} = a_{ij} para todo i = 1 , \hdots , m ,  j = 1 , \hdots , n o que mostra A =(A^t)^t . No item b , utilize a definição (**) + propriedades dos números reais ,se não conseguir post . No item c , basta intercambiar a definição (**) juntamente com a definição produto de matrizes . Veja minha sugestão ,

[(AB)^t]_{ij} = [AB]_{ji} = \sum_{k=1}^n a_{jk} \cdot  b_{ki} . Sendo o produto a_{jk} \cdot  b_{ki} comutativo (pois ,a_{jk} ,  b_{ki}são números reais) e utilizando resultado do item (a) , a_{jk} = [A^t]_{kj} , b_{kj} = [B^t]_{jk} . Seguindo estas dicas conseguirá concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}