• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Proximidade de Vetores

Proximidade de Vetores

Mensagempor Jhonata » Dom Jul 21, 2013 12:32

Pessoal, surgiu mais uma dúvida, alguém aí pode me ajudar?

Seja S={(x,y,z)\in\Re^3|x-y-2z=0} e b=(1,1,1).
Determine a soma das coordenadas do vetor de S mais próximo de b.

Gabarito: \frac{7}{3}

Desde já, obrigado!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Proximidade de Vetores

Mensagempor e8group » Dom Jul 21, 2013 14:08

Boa tarde .Não verifiquei a resposta ,mas apresentarei um raciocínio para o exercício .O subconjunto S do \mathbb{R}^3 ,mais precisamente , S um é subespaço do \mathbb{R}^3 ,seus vetores são os pontos (x,y,z) \in \mathbb{R}^3 que satisfaz a propriedade do conjunto S que é (*) x - y - 2z = 0 . Indo diretamente a geometria analítica ,seja A = (a,b,c) \in S o ponto mais próximo de B = (1,1,1).Definindo \vec{n} :=(1,-1,-2) vetor normal ao plano que passa pela origem de equação (*) e escolhendo um ponto arbitrário C em S (Escolha o ponto que você quiser,fique à vontade !) .

Próxima etapa :

Antes de tudo recomendo que faça um esboço da situação . Observando o triângulo retângulo , de catetos ||\overrightarrow{AB} || ,|\overrightarrow{AC} || e hipotenusa |\overrightarrow{BC} || ,fica fácil ver as seguintes relações :


(a) \overrightarrow{AB} \parallel \vec{n} \implies \exists \beta \in \mathbb{R} : \overrightarrow{AB} = \beta \vec{n}

(b) \overrightarrow{AC}\perp \vec{n} \implies \overrightarrow{AC}\cdot  \vec{n} = 0


(c) \overrightarrow{AC}  - \overrightarrow{AB}  =  \overrightarrow{BC} .

Partindo de (c) e usando (a) temos :

(**) \overrightarrow{AC}  - \beta \vec{n} =  \overrightarrow{BC} .Multiplicando-se escalarmente (**) por \vec{n} e usando (b) , segue :

- \beta ||\vec{n}||^2 = \overrightarrow{BC}  \cdot \vec{n} .


Logo , \beta = -\frac{\overrightarrow{BC}  \cdot \vec{n}}{||\vec{n}||^2} .

Assim , voltando em (a) temos :

\overrightarrow{AB} = -\frac{\overrightarrow{BC} \cdot \vec{n}}{||\vec{n}||^2} \vec{n} . Agora já conseguimos obter o ponto A ,pois já temos o ponto B ,o ponto C e o vetor \vec{n} .Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Proximidade de Vetores

Mensagempor Jhonata » Dom Jul 21, 2013 14:16

santhiago escreveu:Boa tarde .Não verifiquei a resposta ,mas apresentarei um raciocínio para o exercício .O subconjunto S do \mathbb{R}^3 ,mais precisamente , S um é subespaço do \mathbb{R}^3 ,seus vetores são os pontos (x,y,z) \in \mathbb{R}^3 que satisfaz a propriedade do conjunto S que é (*) x - y - 2z = 0 . Indo diretamente a geometria analítica ,seja A = (a,b,c) \in S o ponto mais próximo de B = (1,1,1).Definindo \vec{n} :=(1,-1,-2) vetor normal ao plano que passa pela origem de equação (*) e escolhendo um ponto arbitrário C em S (Escolha o ponto que você quiser,fique à vontade !) .

Próxima etapa :

Antes de tudo recomendo que faça um esboço da situação . Observando o triângulo retângulo , de catetos ||\overrightarrow{AB} || ,|\overrightarrow{AC} || e hipotenusa |\overrightarrow{BC} || ,fica fácil ver as seguintes relações :


(a) \overrightarrow{AB} \parallel \vec{n} \implies \exists \beta \in \mathbb{R} : \overrightarrow{AB} = \beta \vec{n}

(b) \overrightarrow{AC}\perp \vec{n} \implies \overrightarrow{AC}\cdot  \vec{n} = 0


(c) \overrightarrow{AC}  - \overrightarrow{AB}  =  \overrightarrow{BC} .

Partindo de (c) e usando (a) temos :

(**) \overrightarrow{AC}  - \beta \vec{n} =  \overrightarrow{BC} .Multiplicando-se escalarmente (**) por \vec{n} e usando (b) , segue :

- \beta ||\vec{n}||^2 = \overrightarrow{BC}  \cdot \vec{n} .


Logo , \beta = -\frac{\overrightarrow{BC}  \cdot \vec{n}}{||\vec{n}||^2} .

Assim , voltando em (a) temos :

\overrightarrow{AB} = -\frac{\overrightarrow{BC} \cdot \vec{n}}{||\vec{n}||^2} \vec{n} . Agora já conseguimos obter o ponto A ,pois já temos o ponto B ,o ponto C e o vetor \vec{n} .Tente concluir .


Muito bom. Tentarei aplicar o seu raciocínio nesta questão. Mas tendo em vista ser uma questão objetiva e de prova, acredito que haja algo mais simplório para a mesma.
De qualquer modo, muito obrigado Santhiago!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Proximidade de Vetores

Mensagempor e8group » Dom Jul 21, 2013 14:29

santhiago escreveu:Muito bom. Tentarei aplicar o seu raciocínio nesta questão. Mas tendo em vista ser uma questão objetiva e de prova, acredito que haja algo mais simplório para a mesma.
De qualquer modo, muito obrigado Santhiago!

Não há de quê .Acho que uma forma mais simples(não sei é exatamente isto ) é aplicar a fórmula que fornece a distância de um ponto a um plano .Não lembro desta fórmula ,infelizmente tenho extrema dificuldade em decorar fórmulas .Sempre tenho que tirar um tempo a mais para deduzi-las ,a menos que tal dedução seja" trabalhosa" levando muito tempo para obtê-la .Neste caso,acho importante aplicar diretamente a fórmula ,mesmo assim é difícil lembrar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Proximidade de Vetores

Mensagempor e8group » Dom Jul 21, 2013 14:43

Se não cometi nenhum equívoco com o raciocínio o módulo do vetor \\overrightarrow{AB} fornece a distância do ponto (1,1,1) ao plano de equação vide propriedade do conjunto S .Como só estamos queremos a soma das coordenadas do ponto A .Vamos verificar :

B+ \frac{\overrightarrow{BC} \cdot \vec{n}}{||\vec{n}||^2} \vec{v} =  A .

Escolhendo por exemplo C = (1,1,0) \in S temos :

A = (1,1,1) +  \frac{(0,0,-1)} \cdot (1,-1,-2) }{1^2 + (-1)^2 + (-2)^2}  = (1,1,1) +  \frac{2}{6}(1,-1,-2) = (1,1,1) +  \frac{2}{6}(1,-1,-2) =( \frac{8}{6} , \frac{4}{6}, \frac{2}{6})

Logo ,

\frac{8}{6}+ \frac{4}{6}+ \frac{2}{6} = \frac{14}{6} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Proximidade de Vetores

Mensagempor Jhonata » Dom Jul 21, 2013 14:54

santhiago escreveu:Se não cometi nenhum equívoco com o raciocínio o módulo do vetor \\overrightarrow{AB} fornece a distância do ponto (1,1,1) ao plano de equação vide propriedade do conjunto S .Como só estamos queremos a soma das coordenadas do ponto A .Vamos verificar :

B+ \frac{\overrightarrow{BC} \cdot \vec{n}}{||\vec{n}||^2} \vec{v} =  A .

Escolhendo por exemplo C = (1,1,0) \in S temos :

A = (1,1,1) +  \frac{(0,0,-1)} \cdot (1,-1,-2) }{1^2 + (-1)^2 + (-2)^2}  = (1,1,1) +  \frac{2}{6}(1,-1,-2) = (1,1,1) +  \frac{2}{6}(1,-1,-2) =( \frac{8}{6} , \frac{4}{6}, \frac{2}{6})

Logo ,

\frac{8}{6}+ \frac{4}{6}+ \frac{2}{6} = \frac{14}{6} .



Certíssimo, consegui aplicar também aqui o sua ideia chegando na mesma resposta.. É um pouco trabalhosa, mas vale a pena se chegarmos no mesmo resultado.
Mas como já diz o ditado: Sem esforço não há recompensa. Mais uma vez, muito obrigado!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Proximidade de Vetores

Mensagempor MateusL » Dom Jul 21, 2013 15:00

O vetor normal ao plano S é \vec{n}=(1,-1,-2)

Temos que achar \alpha tal que:

(\vec{b}-\alpha\vec{n})\cdot \vec{n}=0

Ou seja, um valor de \alpha tal que \alpha\vec{n} seja igual à projeção ortogonal de \vec{b} em relação a S, pois assim, e somente assim, (\vec{b}-\alpha\vec{n}) será ortogonal a \vec{n} (em outras palavras, pertencerá a S), implicando que o produto escalar entre esses dois vetores seja igual a zero.

Achando \alpha, o vetor procurado será \vec{b}-(\alpha\vec{n}), que é a projeção de \vec{b} em S.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.