• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaços vetoriais

Espaços vetoriais

Mensagempor crsjcarlos » Seg Jun 10, 2013 19:14

Tenho um subespaço de R^4, gerado por 4 vetores S = {(1,2,-1,3) , (3,0,1,-2) , (1,-4,3,-8) , (5,-8,7,-18)}. Esse espaço tem dimensão igual a 2. Faço a matriz A (4x4), cujas colunas são os 4 vetores.
Tomamos o sistema A.X = 0, e obtemos como solução geral, X = [(4a + 2b , -3a - b , b , a)].
Escrevo X como o subespaço {(4,-3,0,1) , (2,-1,1,0)], logo, esses dois vetores de X geram o subespaço X, e portanto formam uma base de X.

A minha dúvida é a seguinte: Quero saber se os dois vetores de X podem ser uma base para S.
crsjcarlos
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 05, 2012 17:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}