por iarapassos » Qui Mar 21, 2013 00:02
Considere o R³ com produto interno usual. Determine o vetor u do R³,
ortogonal as vetores v1=(1,1,2), v2=(5,1,3) e v3=(2,-2,-3).
Eu pensei assim Tenho um vetor w(x,y,z) e que é ortogonal a cada um dos vetores.
x+y+2z=0
5x+y+3z=0
2x-2y-3z=0
-
iarapassos
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Ago 29, 2012 12:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por Russman » Qui Mar 21, 2013 12:14
Isso mesmo. Resolva o sistema.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Analítica - Produto interno de vetores
por caioleitemg » Qua Mar 22, 2017 12:52
- 1 Respostas
- 3783 Exibições
- Última mensagem por caioleitemg

Qua Mar 22, 2017 15:17
Geometria Analítica
-
- [PRODUTO INTERNO DE VETORES] Ajuda urgente por favor
por victordhn » Ter Dez 04, 2012 11:20
- 0 Respostas
- 2332 Exibições
- Última mensagem por victordhn

Ter Dez 04, 2012 11:20
Álgebra Linear
-
- vetores são ortogonais.
por Ana Maria da Silva » Seg Abr 08, 2013 15:13
- 1 Respostas
- 2958 Exibições
- Última mensagem por e8group

Seg Abr 08, 2013 16:22
Geometria Analítica
-
- Produto Interno
por Claudin » Sáb Fev 16, 2013 15:50
- 2 Respostas
- 2344 Exibições
- Última mensagem por Claudin

Ter Fev 19, 2013 21:05
Álgebra Linear
-
- Produto Interno
por Claudin » Qua Fev 20, 2013 02:01
- 3 Respostas
- 2828 Exibições
- Última mensagem por LuizAquino

Qua Fev 20, 2013 10:27
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.