• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algebra linear

Algebra linear

Mensagempor Well » Sáb Mar 02, 2013 21:26

Calcule o único valor de a que faz com que S = {(1, 1, 1) , (1, 0, 1) , (0, 2, 0) , (3, 2, a)} não seja um conjunto gerador de R3.

Eu resolvi e encontrei a=3 , que é a resposta correta. Mas gostaria de ver outra resolução e comparar com a minha.
Agradeço.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Algebra linear

Mensagempor young_jedi » Dom Mar 03, 2013 00:18

temos que os quatro elementos tem que ser linearmente independentes, para que possam gerar R3
no entanto do terceiro elemento é uma combinação dos dois primeiros

2(1,1,1)-2(1,0,1)=(0,2,0)

portanto se o terceiro for uma combinação linear dos outros dois então, eles não são capazes de gerar R3

portanto se a=3

2(1,1,1)+(1,0,1)=(3,2,3)

então o conjunto não é capaz de gerar R3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.