• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformação linear com números complexos

Transformação linear com números complexos

Mensagempor Biah m » Sex Nov 02, 2012 14:58

Olá! Eu tenho que resolver esse exercício, porém eu não sei usar números complexos. Já procurei exemplo de resolução em livros, internet, tudo, mas tudo que eu encontro é com reais :/ Portanto, eu realmente espero que vocês possam me ajudar nessa, e me mostrar como resolver com número complexo. Muito obrigada!!!

-> Determine o núcleo e a imagem das seguinte transformação linear:

T: C² \rightarrow R² dada por T (x+yi , z+ti) = (x+2z , -x+2t)
Biah m
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 02, 2012 14:47
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformação linear com números complexos

Mensagempor MarceloFantini » Sex Nov 02, 2012 16:26

Para encontrar o núcleo, faça T(x+yi, z+ti) = (0,0), então (x+2z, -x+2t) = (0,0). Resolva o sistema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Transformação linear com números complexos

Mensagempor Biah m » Sex Nov 02, 2012 16:39

MarceloFantini escreveu:Para encontrar o núcleo, faça T(x+yi, z+ti) = (0,0), então (x+2z, -x+2t) = (0,0). Resolva o sistema.


Eu sei resolver pros reais, mas não pros complexos. Eu resolvo o sistema e substituo como???

O sistema dará z = -x/2 e t=x/2.

Eu substituo como, então? w = (x + 0yi, -x/2 + x/2i) ???? E em seguida, o que eu faço?

Obrigada.
Biah m
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 02, 2012 14:47
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformação linear com números complexos

Mensagempor MarceloFantini » Sex Nov 02, 2012 16:59

Você encontrou então que os elementos em \mathbb{C}^2 da forma \left( x+yi, \frac{-x}{2} + \frac{x}{2}i \right) levam a transformação no zero. É só escrever isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Transformação linear com números complexos

Mensagempor vualas » Sex Nov 09, 2012 13:38

E a imagem Marcelo?
vualas
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Nov 07, 2012 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}