• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Linear

Álgebra Linear

Mensagempor marinalcd » Seg Out 15, 2012 12:59

Como faço para determinar se uma transformação linear é injetora ou sobrejetora?
Por exemplo: T(x,y)= (x-2y,3x+y,x+y) é injetora ou sobrejetora.
Não estou conseguindo determinar!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra Linear

Mensagempor young_jedi » Seg Out 15, 2012 15:18

uma transformação é dita injetora se elementos distintos do dominio fornecem imagens distintas.

ou seja para um dado (x_1,y_1) existe uma imagem sendo que nenhum outro par (x,y) resulte nessa mesma imagem.
observe que se existirem dois elementos do dominio que tem a mesma imagem podemos dizer

x_1-2y_1=x_2-2y_2
3x_1+y_1=3x_2+y_2
x_1+y_1=x_2+y_2

dai tiramos

x_1-x_2-2(y_1-y_2)=0
3(x_1-x_2)+y_1-y_2=0
x_1-x_2+y_1-y_2=0

temos que a unica solução deste sistema sera para

x_1-x_2=0
y_1-y_2=0

ou seja

x_1=x_2
y_1=y_2

sendo assim eles são o mesmo elemento, portanto cada elemento da imagem possui apenas um elemento correpondente no dominio então a função é injetora.
para a função sobrejetora lembre-se de que a imagem deve ser igual ao contra-dominio, neste caso o contradominio são os elementos de R^3, então voce tem que verificar se para cada elemento de R^3 existe um par (x,y) associado a ele.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Álgebra Linear

Mensagempor marinalcd » Seg Out 15, 2012 16:16

Obrigada pela ajuda!

Então, sendo uma função injetora, ela não pode ser sobrejetora, né? (nesse caso)
Mesmo eu calculando.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra Linear

Mensagempor young_jedi » Seg Out 15, 2012 16:36

uma função pode sim ser sobrejetora e injetora sendo assim bijetora, não é o caso desta
ela é injetora porem não e sobrejetora.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Álgebra Linear

Mensagempor marinalcd » Seg Out 15, 2012 19:34

Muito obrigada pela ajuda!!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.