• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TRANSFORNAÇÃO LINEAR

TRANSFORNAÇÃO LINEAR

Mensagempor baianinha » Seg Fev 21, 2011 12:59

Sabendo que a matriz de uma transformação linear t:{P}_{2}(R)\rightarrow{M}_{2x2(R)}
nas bases a={ t, t+2,{t}^{2}} do {P}_{2}(R)   
  e B={\left[
\begin{vmatrix}
   1 & 1  \\ 
   0 & 0 
\end{vmatrix}
 \right],\left[
\begin{vmatrix}
   0 & 1  \\ 
   1 & 0 
\end{vmatrix}
 \right],\left[
\begin{vmatrix}
   0 & 0  \\ 
   1 & 1 
\end{vmatrix},}

 \right],\left[
\begin{vmatrix}
   0 & 0  \\ 
   1 & 2 
\end{vmatrix}
 \right],\left[T \right]A.B=
\begin{pmatrix}
   1 & 1 & 0  \\ 
   0 & 1 & 0  \\
   0 & 0 & -1  \\ 
   0 & 0 &  1
\end{pmatrix}

Como faço para encontrar a expressão de T (X,Y)?
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: TRANSFORNAÇÃO LINEAR

Mensagempor LuizAquino » Ter Fev 22, 2011 16:44

baianinha escreveu:Sabe-se que a matriz de uma transformação linear T:P_2(\mathbb{R}) \rightarrow M_{2\times 2}(\mathbb{R})

é dada por [T]_A^B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix},

considerando as bases A=\{ t,\, t+2,\, t^2\} de P_2(\mathbb{R}) e B=\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},\, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix},\, \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} \right\} de M_{2\times 2}(\mathbb{R}).

Encontrar a expressão de T(p).


Do conhecimento de Álgebra Linear, sabemos que:

[T(p)]_B = [T]_A^B[p]_A

onde
[T(p)]_B - vetor de coordenadas de T(p) na base B;
[T]_A^B - matriz de T em relação as bases A e B;
[p]_A - vetor de coordenadas de p na base A;

Primeiro, vamos determinar quem é o vetor de coordenadas de p na base A. Sabemos que um polinômio de 2° grau é dado por p(t) = at^2 + bt + c. Nós queremos descobrir os escalares k1, k2 e k3 de modo que p(t) = k_1t + k_2(t+2) + k_3t^2. Arrumando essa equação e comparando os coeficientes dos polinômios, é fácil obter que k_1 = b - \frac{c}{2}, k_2 = \frac{c}{2}, k_3 = a. Portanto, temos que:
[p]_A = \begin{bmatrix} b -\frac{c}{2} \\ \frac{c}{2} \\ a \end{bmatrix}_A

Desse modo, obtemos que:
[T(p)]_B = [T]_A^B[p]_A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}_A^B \begin{bmatrix} b -\frac{c}{2} \\ \frac{c}{2} \\ a \end{bmatrix}_A = \begin{bmatrix} b \\ \frac{c}{2} \\ - a \\ a \end{bmatrix}_B

Escrevendo [T(p)]_B usando o vetor de coordenadas calculado e a base B dada, nós temos:

T(p) = b\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}  + \frac{c}{2}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - a\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + a\begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}

T(p) = \begin{bmatrix} b & b+\frac{c}{2} \\ \frac{c}{2} & a \end{bmatrix}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.