• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aulas de Cálculo 1 (Projeto Newton - UFPA)

Mantendo-se o intuito da ajuda educativa, espaço para recomendações de sites e outras referências, exceto anúncio de divulgação com interesse comercial.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Aulas de Cálculo 1 (Projeto Newton - UFPA)

Mensagempor raimundoocjr » Sex Out 25, 2013 19:45

São aulas de Cálculo 1 organizadas pelo Projeto Newton da Universidade Federal do Pará (UFPA).

Informação: Projeto Newton (pode clicar aqui para saber mais) ou http://www.portal.ufpa.br/imprensa/noticia.php?cod=7484.

Observação: Copiar e colar o endereço no navegador.

Nota 1: Essas aulas são referentes ao "primeiro semestre de 2013".

Nota 2: No final da página, clique em "Visualizar" para que o conteúdo seja exibido através do navegador ou clique em "Download" para armazenar a aula no computador.

Apresentação:
Apresentação 1: https://vimeo.com/64430301
Apresentação 2: http://vimeo.com/64516477
Apresentação 3 (Foi publicado em 28 de Maio de 2013): https://vimeo.com/67167353
Apresentação 4 (Foi publicado em 8 de Julho de 2013): https://vimeo.com/69899933

Aulas:
Aula 1 (22/04/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1088
Aula 2 (24/04/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1089
Aula 3 (29/04/2013): http://multimidia.ufpa.br/jspui/handle/321654/1096
Aula 4 (06/05/2013): http://multimidia.ufpa.br/jspui/handle/321654/1106
Aula 5 (08/05/2013): http://multimidia.ufpa.br/jspui/handle/321654/1106
Aula 6 (13/05/2013): http://multimidia.ufpa.br/jspui/handle/321654/1109
Aula 7 (15/05/2013): http://multimidia.ufpa.br/jspui/handle/321654/1110
Aula 8 (20/05/2013): http://multimidia.ufpa.br/jspui/handle/321654/1113
Aula 9 (22/05/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1114
Aula 10 (27/05/2013): http://multimidia.ufpa.br/jspui/handle/321654/1119
Aula 11 (29/05/2013): http://multimidia.ufpa.br/jspui/handle/321654/1120
Aula 12 (03/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1122
Aula 13 (05/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1123
Aula 14 (10/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1126
Aula 15 (14/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1129
Aula 16 (17/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1130
Aula 17 (19/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1131
Aula 18 (24/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1134
Aula 19 (26/06/2013): http://multimidia.ufpa.br/jspui/handle/321654/1135
Aula 20 (01/07/2013): http://multimidia.ufpa.br/jspui/handle/321654/1138
Aula 21 (03/07/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1139
Aula 22 (08/07/2013): http://multimidia.ufpa.br/jspui/handle/321654/1142
Aula 23 (10/07/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1143
Aula 24 (15/07/2013): http://multimidia.ufpa.br/jspui/handle/321654/1146
Aula 25 (17/07/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1147
Aula 26 (22/07/2013): http://multimidia.ufpa.br/jspui/handle/321654/1151
Aula 27 (24/07/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1152
Aula 28 (29/07/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1155
Aula 29 (31/07/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1156
Aula 30 (05/08/2013): http://multimidia.ufpa.br/jspui/handle/321654/1160
Aula 31 (07/08/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1161
Aula 32 (12/08/2013): http://www.multimidia.ufpa.br/jspui/handle/321654/1164

Resolução de Exercícios:
Resolução 1: http://multimidia.ufpa.br/jspui/handle/321654/1091
Resolução 2: http://multimidia.ufpa.br/jspui/handle/321654/1092
Resolução 3: http://www.multimidia.ufpa.br/jspui/handle/321654/1104
Resolução 4: http://www.multimidia.ufpa.br/jspui/handle/321654/1103
Resolução 5: http://multimidia.ufpa.br/jspui/handle/321654/1107
Resolução 6: http://multimidia.ufpa.br/jspui/handle/321654/1108
Resolução 7: http://multimidia.ufpa.br/jspui/handle/321654/1111
Resolução 8: http://multimidia.ufpa.br/jspui/handle/321654/1112
Resolução 9: http://multimidia.ufpa.br/jspui/handle/321654/1117
Resolução 10: http://multimidia.ufpa.br/jspui/handle/321654/1118
Resolução 11 e 12: http://multimidia.ufpa.br/jspui/handle/321654/1121
Resolução 13: http://www.multimidia.ufpa.br/jspui/handle/321654/1124
Resolução 14: http://www.multimidia.ufpa.br/jspui/handle/321654/1125
Resolução 15: http://www.multimidia.ufpa.br/jspui/handle/321654/1127
Resolução 16: http://www.multimidia.ufpa.br/jspui/handle/321654/1128
Resoluçã0 17: http://www.multimidia.ufpa.br/jspui/handle/321654/1132
Resolução 18: http://www.multimidia.ufpa.br/jspui/handle/321654/1133
Resolução 19: http://multimidia.ufpa.br/jspui/handle/321654/1136
Resolução 20: http://multimidia.ufpa.br/jspui/handle/321654/1137
Resolução 21: http://multimidia.ufpa.br/jspui/handle/321654/1141
Resolução 22: http://multimidia.ufpa.br/jspui/handle/321654/1140
Resolução 23: http://multimidia.ufpa.br/jspui/handle/321654/1144
Resolução 24: http://www.multimidia.ufpa.br/jspui/handle/321654/1145
Resolução 25: http://multimidia.ufpa.br/jspui/handle/321654/1148
Resolução 26: http://multimidia.ufpa.br/jspui/handle/321654/1149
Resolução 27: http://multimidia.ufpa.br/jspui/handle/321654/1150
Resolução 28: http://www.multimidia.ufpa.br/jspui/handle/321654/1153
Resolução 29: http://www.multimidia.ufpa.br/jspui/handle/321654/1154
Resolução 30: http://multimidia.ufpa.br/jspui/handle/321654/1157
Resolução 31: http://multimidia.ufpa.br/jspui/handle/321654/1158
Resolução 32: http://multimidia.ufpa.br/jspui/handle/321654/1159
Resolução 33: http://www.multimidia.ufpa.br/jspui/handle/321654/1162
Resolução 34: http://www.multimidia.ufpa.br/jspui/handle/321654/1163
raimundoocjr
 

Re: Aulas de Cálculo 1 (Projeto Newton - UFPA)

Mensagempor raimundoocjr » Qui Dez 26, 2013 16:41

raimundoocjr
 


Voltar para Sites Recomendados / Outras Indicações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D