• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cursinho fazer ou não ?

Área destinada para assuntos gerais ou considerados off-topic, excluindo quaisquer propagandas comerciais ou anúncios.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Cursinho fazer ou não ?

Mensagempor replay » Qui Jan 24, 2013 10:42

Galera, sempre estudei em escola pública, digamos que não aprendi muito bem aliado a uma dificuldade de atenção diagnosticada em janeiro de 2013.

Eu estudo melhor sozinho, mas muita gente diz que os cursinhos são ótimos e tals.

Penso em um curso de até 450 reais no máximo.

Alguêm ai tem alguma dica, se vale a pena, recomendações etc... ?
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cursinho fazer ou não ?

Mensagempor andrehp » Sáb Mar 16, 2013 11:07

replay escreveu:Galera, sempre estudei em escola pública, digamos que não aprendi muito bem aliado a uma dificuldade de atenção diagnosticada em janeiro de 2013.

Eu estudo melhor sozinho, mas muita gente diz que os cursinhos são ótimos e tals.

Penso em um curso de até 450 reais no máximo.

Alguêm ai tem alguma dica, se vale a pena, recomendações etc... ?


Se você consegue estudar melhor sozinho, recomendo fazer o que eu fiz: compre livros de cursinhos em um sebo. Estes livros são sempre bem sintetizados e abrangem todo o conteúdo do vestibular. Então faça um cursinho super-intensivo de um mês antes da data da sua prova.

Abraço!
"A política serve a um momento no presente, mas uma equação é eterna." [Albert Einstein]
andrehp
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Mar 16, 2013 10:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cursinho fazer ou não ?

Mensagempor marinalcd » Sáb Mar 16, 2013 18:20

O importante não é o cursinho, mas sim as pessoas que estudam.
Às vezes o cursinho pode ser o melhor de todos, mas só tem alunos que não querem nada.
Ou pode acontecer de o cursinho não ser bem conceituado e o aluno se sair muito bem.

Então eu aconselho a fazer o que lhe melhor convier, se você consegue estudar bem sozinho e dá conta de tudo, continue assim e utilize o dinheiro para conseguir materiais que possam te satisfazer, auxiliar.

Eu digo isso por experiência própria, me saio muito melhor estudando sozinha do que em grupo, e aproveito para comprar materiais que preciso, ou que possuem curiosidades acerca de temas que estudo. É muito útil e quando aparecer dúvidas, que são inevitáveis, é só postar aqui no fórum que, tenho a certeza, que sempre vão te ajudar!!!

Abraços.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Assuntos Gerais ou OFF-TOPIC

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?



cron