• Anúncio Global
    Respostas
    Exibições
    Última mensagem

JUROS - CAPITALIZAÇÃO SIMPLES

JUROS - CAPITALIZAÇÃO SIMPLES

Mensagempor Claudinei » Dom Out 02, 2011 21:17

ENUNCIADO: DOIS CAPITAIS COLOCADOS, O PRIMEIRO, A 4% a.a., DURANTE 8 MESES, E O SEGUNDO, A 3% a.a., DURANTE 9 MESES, RENDEM JUROS IGUAIS. DETERMINAR ESSES CAPITAIS, SABENDO QUE A SUA DIFERENÇA É DE R$ 12,50.

Pv, Pv1 e Pv2 = VALORES PRESENTES
I = JUROS
i = TAXA DE JUROS
n=NÚMERO DE PERÍODOS
I = Pv.i.n/m

TENTATIVA:
Pv1 - Pv2 = 12,50 => Pv1= Pv2 + 12,50

Pv1* 0,04 / 12 * 8 = Pv2 * 0,03/12 * 9

ENTÃO:
RESOLVENDO A SEGUNDA

Pv1 = Pv2 * 0,8427

SUBSTITUINDO NA PRIMEIRA

Pv2 * 0,8427 = Pv2 + 12,50

RESPOSTA Pv2 = R$ 6,78

ONDE ESTÁ O ERRO !?!?!
Claudinei
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 02, 2011 20:51
Formação Escolar: GRADUAÇÃO
Área/Curso: FILOSOFIA
Andamento: formado

Re: JUROS - CAPITALIZAÇÃO SIMPLES

Mensagempor mausim » Qui Out 27, 2011 11:46

Você fez baseando-se em juros simples?

Vou dar uma volta muito grande, mas espero alcançar o objetivo. Mas vou pelos juros compostos, espero que não lhe cause problemas com isto.

Vamos escrever a sentença, enquanto lemos o enunciado:

{j}_{1} = {j}_{2}

que é o mesmo que

{M}_{1} - {C}_{1} = {M}_{2} - {C}_{2}

Aplicando

{C}_{1} {(1+{0,04 \over 12})^8} - {C}_{1} = ({C}_{1} + 12,50){(1+{0,03 \over 12})^9} - ({C}_{1} + 12,50)

Melhorando essa confusão

{{C}_{1} \over {{C}_{1}+12,50}} = {{0,022726 \over 0,02698}} = 0,842344

{C}_{1} = 0,842344 \times ({C}_{1}+12,50)= 0,842344 \times {C}_{1} + 10,5293

{C}_{1} - 0,842344 {C}_{1} = 10,5293

{C}_{1} (1 - 0,842344) = 10,5293

{C}_{1} = 66,78643

Como {C}_{2} = {C}_{1}+12,50,

{C}_{2} = 79,28643

Tirando a prova através de

M = C (1+i)^n


{C}_{1} a 4% teremos

M = 66,78643 (1+{0,04 \over 12})^8 = 68,58833

Os juros, no caso de {C}_{1} serão

M - {C}_{1} = 1,8018

Agora o {C}_{2} a 4% teremos

M = 79,28643 (1+{0,03 \over 12})^9 = 81,0883

Os juros, no caso de {C}_{2} serão

M - {C}_{2} = 1,8018

Ficam assim os juros iguais (1,8018) e os capitais C1 e C2 com a diferença de 12,50.


.
mausim
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Ter Out 25, 2011 10:27
Formação Escolar: SUPLETIVO
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?