• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferença resultado valor presente e equivalência de taxas

Diferença resultado valor presente e equivalência de taxas

Mensagempor Leo88 » Ter Mai 02, 2017 23:40

Olá, alguém sabe explicar o porquê da diferença das taxas resultantes entre esses dois métodos de cálculo?

Exemplo:
Preciso calcular o valor presente (PV) a uma taxa de juros compostos de 12% ao ano durante o período de 3 anos de um valor futuro de R$ 100,00 sem nenhum pagamento durante o período.

Método 1 - Equivalência de Taxas - Calculo da taxa para 3 anos para descontar do valor futuro:
i3a = ((1+ ia)^n) -1 //Fórmula Equivalência de Taxas
i3a = ((1+ 0,12)^3) -1
i3a = 0,404928 = 40,49% //% de Desconto

PV = 100,00 * ( 1 - 0,404928) //descontar o valor da taxa no valor futuro
PV = 100,00 * 0,595072
PV = 59,5072 //Valor Presente Final

Método 2 - Valor Presente - Calculo do Valor Presente
PV = FV / (1+i)^n //Fórmula Valor Presente
PV = 100,00 / ( 1+ 0,12)^3
PV = 71,1780 //Valor Presente Final

% de Desconto = ((71,1780 / 100,00) -1) *100
% de Desconto = -28,822

Enfim, o método 1 resultou em 40,49% de desconto sobre o valor futuro enquanto no método 2 resultou em somente 28,82% de desconto!!

Alguém tem alguma ideia para essa charada?
Obrigado ;)
Leo88
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 02, 2017 23:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.