• Anúncio Global
    Respostas
    Exibições
    Última mensagem

SOBRE TOTAL DE JUROS DO CARLOS

SOBRE TOTAL DE JUROS DO CARLOS

Mensagempor Luan123 » Ter Nov 22, 2016 12:43

Carlos aplicou R$ 8.000,00 durante um mês : Uma parte a taxa de juro simples de 2,4% ao mês, e o restante a taxa de juros simples de 2% ao mês .A parte que ele aplicou a 2,4% ao mês rendeu o dobro de juros do que a parte aplicada a 2% ao mês .Quanto ele recebeu de juros no total?
Luan123
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 22, 2016 12:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: SOBRE TOTAL DE JUROS DO CARLOS

Mensagempor DanielFerreira » Sáb Nov 26, 2016 18:28

Luan123 escreveu:Carlos aplicou R$ 8.000,00 durante um mês : Uma parte a taxa de juro simples de 2,4% ao mês, e o restante a taxa de juros simples de 2% ao mês .A parte que ele aplicou a 2,4% ao mês rendeu o dobro de juros do que a parte aplicada a 2% ao mês .Quanto ele recebeu de juros no total?


Da parte que Carlos aplicou 2% a.m, temos que:

taxa (i): 2% a.m
juros (J): x
prazo (n): 1 mês
capital (C): c

Daí,

\\ \mathsf{J = Cin} \\\\ \mathsf{x = c \cdot \frac{2}{100} \cdot 1} \\\\ \mathsf{x = \frac{c}{50}} \\\\ \boxed{\mathsf{c = 50x}}


Da parte que Carlos aplicou 2,4% a.m, temos que:

taxa (i): 2,4% a.m
juros (J): 2x
prazo (n): 1 mês
capital (C): 8000 - c

Logo,

\\ \mathsf{J = Cin} \\\\ \mathsf{2x = (8000 - c) \cdot \frac{2,4}{100} \cdot 1} \\\\ \mathsf{2x = (8000 - 50x) \cdot \frac{24}{1000}} \\\\ \mathsf{2000x = 24(8000 - 50x)} \\\\ \mathsf{2000x = 24 \cdot 50(160 - x) \qquad \div(400} \\\\ \mathsf{5x = 3(160 - x)} \\\\ \mathsf{5x + 3x = 3 \cdot 160} \\\\ \mathsf{8x = 3 \cdot (20 \cdot 8)} \\\\ \boxed{\boxed{\mathsf{x = 60}}}

Agora ficou fácil concluir!

Comente qualquer dúvida!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1664
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59