• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Montante - Em relação a um aumento de 10% ao preço original

Montante - Em relação a um aumento de 10% ao preço original

Mensagempor Macedo Junior » Sáb Jul 30, 2016 13:23

Inst. Mais – A construção de um edifício deveria requerer 600 toneladas de material de construção. No entanto, o projetista decidiu ampliar todas as dimensões dessa edificação em 10% em relação ao projeto original. Considerando-se que o preço do material seja proporcional ao seu volume, pode-se concluir que o valor a ser despendido na compra do material de construção necessário para essa construção estará em relação ao montante financeiro originalmente calculado, numa faixa:

(a) de até 10% a mais.
(b) Entre 10,1% e 20% a mais.
(c) Entre 20,1% e 30% a mais.
(d) Superior a 30%.

Dúvida: Se eu entendi bem o enunciado do problema, como o preço do material é proporcional ao volume (m³), o montante será 10% x 3 = 30%. Está correto esse raciocínio?

No gabarito a alternativa correta é: (d) Superior a 30%.
Macedo Junior
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jul 22, 2016 11:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Montante - Em relação a um aumento de 10% ao preço origi

Mensagempor Daniel Bosi » Sáb Jul 30, 2016 19:34

Olá, Macedo.

Vamos pensar em um exemplo: supondo que este prédio tem 10 x 10 x 10 metros, isso dá um volume de 1000 m³.

Como o projetista "ampliou todas as dimensões dessa edificação em 10% em relação ao projeto original", isso significa que partindo do exemplo que eu dei, as novas dimensões devem ser 11 x 11 x 11, o que dá 1331 m³.

A variação percentual de 1000 para 1331 é de 33,1%.
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}