• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor Lulumatematica » Seg Jun 27, 2016 01:25

1. Havendo nutrientes suficientes, o crescimento de uma população P de bactérias pode ser modelado em função do tempo t pela equação P(t) = P0(1 + i)^t onde P0 é a população inicial e i é a taxa de crescimento por período. A linha tracejada no gráfico ao lado mostra a função P(t) = 100 ? 1,15^t, que corresponde a uma população inicial de 100 bactérias que aumenta 15% a cada período.

Escolha a alternativa que melhor corresponde à linha tracejada.

a. P cresce de maneira linear até 600, depois não cresce mais. Podemos dizer que limt?? P(t) = 600.

b. P cresce rapidamente no início, e a taxa de crescimento vai diminuindo à medida que a população se aproxima de 600. Dizemos que limt?? P(t) = 600.

c. P cresce sem limitação e de maneira linear. Dizemos que limt?? P(t) = ?.

d. P cresce sem limitação e de maneira exponencial. Podemos dizer que limt?? P(t) = ?.

e. P cresce sem limitação e de maneira exponencial. Podemos dizer que limt?? P(t) = 800.

2. Um modelo um pouco mais realista levaria em conta a capacidade máxima do habitat, representada por K. A equação então fica:
P(t) =K(1 + i)^t/K/P0 + (1 + i)^t -1
A linha cheia no gráfico mostra a função P(t) =600?1,15^t/6+1,15^t?1,ou seja, as mesmas 100 bactérias iniciais crescendo inicialmente a 15% por período, porém agora a capacidade máxima do habitat é 600.
Escolha a alternativa que melhor corresponde à linha cheia.

a. P cresce de maneira linear até 600, depois não cresce mais. Podemos dizer que limt?? P(t) = 600.

b. P cresce rapidamente no início, e a taxa de crescimento vai diminuindo à medida que a população se aproxima de 600. Dizemos que limt?? P(t) = 600.

c. P cresce sem limitação e de maneira linear. Dizemos que limt?? P(t) = ?.

d. P cresce sem limitação e de maneira exponencial. Dizemos que limt?? P(t) = ?.

e. P cresce sem limitação e de maneira exponencial. Dizemos que limt?? P(t) = 800.

3. Geometricamente, a derivada representa

a. os valores de x onde o gráfico da função corta o eixo x.

b. a inclinação da reta tangente ao gráfico da função em um ponto dado.

c. uma parábola.

d. os valores de y onde o gráfico da função corta o eixo y.

e. a soma dos quadrados dos catetos.
Anexos
mate.jpg
grafico
Lulumatematica
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 27, 2016 01:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Agronomia
Andamento: cursando

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 23 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}