• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercícios sobre Juros Simples

Exercícios sobre Juros Simples

Mensagempor Lote14 » Sáb Set 26, 2015 10:44

Olá pessoal do fórum, alguém poderia me ajudar a resolver esta questões sobre Juros Simples:

A aplicação de um capital sob o regime de capitalização simples, durante 10 meses, apresentou, no final deste prazo, um montante igual a R$ 15.660,00. A aplicação de um outro capital de valor igual ao dobro do valor do capital anterior sob o regime de capitalização simples, durante 15 meses, apresentou, no final deste prazo, um montante igual a R$ 32.480,00. Considerando que as duas aplicações foram feitas com a mesma taxa de juros, então a soma dos respectivos juros é igual a.

a) R$ 6.660,00
b) R$ 3.480,00
c) R$ 4.640,00
d) R$ 5.600,00
e) R$ 6.040,00

O gabarito diz q é C. Será isto mesmo?

Questão consta no site gabarite http://www.gabarite.com.br/simulado-concurso/2654-juros-simples-exercicios-com-gabarito-portugues
Lote14
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 24, 2015 16:55
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercícios sobre Juros Simples

Mensagempor nakagumahissao » Dom Set 27, 2015 10:11

Sejam:

J = Cit

Sendo J = Juros, C = capital, i = Taxa e t = tempo

e

M = C + J

Onde M = Montante, C = Capital e J = Juros.

Substituindo-se a primeira equação na segunda teremos:

M = C + J = C + Cit = C(1 + it)

Logo:

M = C(1 + it) \;\;\;\;\; [1]

Usando os dados fornecidos em [1] acima, tem-se que:

15660 = C(1 + 10i)

32480 = 2C(1 + 15i)

Levando-se em consideração que as taxas são iguais nas duas aplicações, vamos isolar a taxa nas duas equações acima:

i = \frac{15660-C}{10C} \;\;\;\;\; [2]

i = \frac{16240-C}{15C} \;\;\;\;\; [3]

Como as taxas são iguais, podemos então igualar [2] e [3], para termos:

\frac{16240-C}{15C} = \frac{15660-C}{10C} \Leftrightarrow 162400C - 10C^{2} = 234900C - 15C^{2}

5C^{2}-72500C = 0\Rightarrow C(5C - 72500) = 0 \Rightarrow

C = 0 \;\;\;ou\;\;\; 5C = 72500 \Rightarrow C = 14500

Descartaremos C = 0 pois não existirão juros para este capital. Sendo assim, usando C = 14500 e [2] acima, obtemos a taxa utilizada:

i = \frac{15660-C}{10C} = \frac{15660-14500}{10 \times 14500} = 0,008

Usando os valores do Capital e da taxa encontrada, obtemos os seguintes Juros:

J = Cit = 14500 \times 0,008 \times 10 = 1160

J = 2Cit = 2 \times 14500 \times 0,008 \times 15 = 3480

Somando-se os valores encontrados dos juros, temos que:

J_{t} = 1160 + 3480 = 4640

Portanto, a resposta é a letra {C}

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 382
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Exercícios sobre Juros Simples

Mensagempor Lote14 » Seg Set 28, 2015 20:06

Bela explicação, não restaram mais dúvidas.

Com esse mesmo raciocínio consegui resolver outras questões parecidas com essa.

Caramba...muito obrigado mesmo.
Lote14
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 24, 2015 16:55
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercícios sobre Juros Simples

Mensagempor estudanteafrfb » Seg Nov 27, 2017 21:02

Olá,

Me desculpem a ignorância e também por reviver um tópico tão antigo.

Estou tendo dificuldade de passar o "i" para o outro lado da equação, poderiam mostrar passo a passo?

nakagumahissao escreveu:
15660 = C(1 + 10i)

i = \frac{15660-C}{10C} \;\;\;\;\;
estudanteafrfb
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 27, 2017 20:55
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Exercícios sobre Juros Simples

Mensagempor nakagumahissao » Ter Nov 28, 2017 05:53

15660 = C(1 + 10i)

A ordem das operações segue as mesmas ordem da aritmética: Potenciação/Raiz Quadrada -> Multiplicação/Divisão -> Soma/Subtração, etc... Assim, neste caso, começaremos com a multiplicação do C por tudo o que está entre parênteses do lado direito da equação.

Como o C está multiplicando por (1 + 10i) e como o inverso da multiplicação é a divisao, multiplicamos ambos os lados por:

\frac{1}{C}

Assim, ficaremos com:

15660 \CDot \frac{1}{C} = \frac{1}{C} \CDot C(1 + 10i)

Então, fazendo agora as contas teremos:

\frac{15660}{C} = \frac{C}{C}(1 + 10i)

Continuando as operações, teremos:

\frac{15660}{C} = 1(1 + 10i)

Como qualquer número multiplicado por 1 é ele mesmo, teremos do lado direito:

\frac{15660}{C} = (1 + 10i)

Agora, podemos remover os parênteses do lado direito, ficando com:

\frac{15660}{C} = 1 + 10i

Aogra, como queremos eliminar o 1 que está do lado direito, cujo sinal é +, ou seja, + 1, somaremos dos dois lados da equação pelo inverso dele, ou seja: -1, ficando com:

-1 + \frac{15660}{C} = -1 + 1 + 10i

Fazendo as contas acima, ficaremos com:

-1 + \frac{15660}{C} = 10i

Agora, precisamos tirar o MMC (Mínimo Múltiplo Comum da parte esquerda da equação. O MMC será 'C'. Assim:

\frac{-C + 15660}{C} = 10i


Como temos uma outra multiplicação novamente do lado direito, ou seja, 10i, teremos que multiplicar ambos os lados da equação por

\frac{1}{10}

ficando com:

\frac{1}{10} \frac{-C + 15660}{C} = \frac{1}{10}10i

Fazendo as contas como anteriormente, ficaremos com:

\frac{-C + 15660}{10C} = i

Trocando os membros desta equação, finalmente teremos o que está procurando:

i = \frac{-C + 15660}{10C}

ou melhor ainda:

i = \frac{15660 - C}{10C}

Mais detalhado do que isso acho difícil.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 382
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: