• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercícios sobre Juros Simples

Exercícios sobre Juros Simples

Mensagempor Lote14 » Sáb Set 26, 2015 10:44

Olá pessoal do fórum, alguém poderia me ajudar a resolver esta questões sobre Juros Simples:

A aplicação de um capital sob o regime de capitalização simples, durante 10 meses, apresentou, no final deste prazo, um montante igual a R$ 15.660,00. A aplicação de um outro capital de valor igual ao dobro do valor do capital anterior sob o regime de capitalização simples, durante 15 meses, apresentou, no final deste prazo, um montante igual a R$ 32.480,00. Considerando que as duas aplicações foram feitas com a mesma taxa de juros, então a soma dos respectivos juros é igual a.

a) R$ 6.660,00
b) R$ 3.480,00
c) R$ 4.640,00
d) R$ 5.600,00
e) R$ 6.040,00

O gabarito diz q é C. Será isto mesmo?

Questão consta no site gabarite http://www.gabarite.com.br/simulado-concurso/2654-juros-simples-exercicios-com-gabarito-portugues
Lote14
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 24, 2015 16:55
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercícios sobre Juros Simples

Mensagempor nakagumahissao » Dom Set 27, 2015 10:11

Sejam:

J = Cit

Sendo J = Juros, C = capital, i = Taxa e t = tempo

e

M = C + J

Onde M = Montante, C = Capital e J = Juros.

Substituindo-se a primeira equação na segunda teremos:

M = C + J = C + Cit = C(1 + it)

Logo:

M = C(1 + it) \;\;\;\;\; [1]

Usando os dados fornecidos em [1] acima, tem-se que:

15660 = C(1 + 10i)

32480 = 2C(1 + 15i)

Levando-se em consideração que as taxas são iguais nas duas aplicações, vamos isolar a taxa nas duas equações acima:

i = \frac{15660-C}{10C} \;\;\;\;\; [2]

i = \frac{16240-C}{15C} \;\;\;\;\; [3]

Como as taxas são iguais, podemos então igualar [2] e [3], para termos:

\frac{16240-C}{15C} = \frac{15660-C}{10C} \Leftrightarrow 162400C - 10C^{2} = 234900C - 15C^{2}

5C^{2}-72500C = 0\Rightarrow C(5C - 72500) = 0 \Rightarrow

C = 0 \;\;\;ou\;\;\; 5C = 72500 \Rightarrow C = 14500

Descartaremos C = 0 pois não existirão juros para este capital. Sendo assim, usando C = 14500 e [2] acima, obtemos a taxa utilizada:

i = \frac{15660-C}{10C} = \frac{15660-14500}{10 \times 14500} = 0,008

Usando os valores do Capital e da taxa encontrada, obtemos os seguintes Juros:

J = Cit = 14500 \times 0,008 \times 10 = 1160

J = 2Cit = 2 \times 14500 \times 0,008 \times 15 = 3480

Somando-se os valores encontrados dos juros, temos que:

J_{t} = 1160 + 3480 = 4640

Portanto, a resposta é a letra {C}

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Exercícios sobre Juros Simples

Mensagempor Lote14 » Seg Set 28, 2015 20:06

Bela explicação, não restaram mais dúvidas.

Com esse mesmo raciocínio consegui resolver outras questões parecidas com essa.

Caramba...muito obrigado mesmo.
Lote14
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 24, 2015 16:55
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercícios sobre Juros Simples

Mensagempor estudanteafrfb » Seg Nov 27, 2017 21:02

Olá,

Me desculpem a ignorância e também por reviver um tópico tão antigo.

Estou tendo dificuldade de passar o "i" para o outro lado da equação, poderiam mostrar passo a passo?

nakagumahissao escreveu:
15660 = C(1 + 10i)

i = \frac{15660-C}{10C} \;\;\;\;\;
estudanteafrfb
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 27, 2017 20:55
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Exercícios sobre Juros Simples

Mensagempor nakagumahissao » Ter Nov 28, 2017 05:53

15660 = C(1 + 10i)

A ordem das operações segue as mesmas ordem da aritmética: Potenciação/Raiz Quadrada -> Multiplicação/Divisão -> Soma/Subtração, etc... Assim, neste caso, começaremos com a multiplicação do C por tudo o que está entre parênteses do lado direito da equação.

Como o C está multiplicando por (1 + 10i) e como o inverso da multiplicação é a divisao, multiplicamos ambos os lados por:

\frac{1}{C}

Assim, ficaremos com:

15660 \CDot \frac{1}{C} = \frac{1}{C} \CDot C(1 + 10i)

Então, fazendo agora as contas teremos:

\frac{15660}{C} = \frac{C}{C}(1 + 10i)

Continuando as operações, teremos:

\frac{15660}{C} = 1(1 + 10i)

Como qualquer número multiplicado por 1 é ele mesmo, teremos do lado direito:

\frac{15660}{C} = (1 + 10i)

Agora, podemos remover os parênteses do lado direito, ficando com:

\frac{15660}{C} = 1 + 10i

Aogra, como queremos eliminar o 1 que está do lado direito, cujo sinal é +, ou seja, + 1, somaremos dos dois lados da equação pelo inverso dele, ou seja: -1, ficando com:

-1 + \frac{15660}{C} = -1 + 1 + 10i

Fazendo as contas acima, ficaremos com:

-1 + \frac{15660}{C} = 10i

Agora, precisamos tirar o MMC (Mínimo Múltiplo Comum da parte esquerda da equação. O MMC será 'C'. Assim:

\frac{-C + 15660}{C} = 10i


Como temos uma outra multiplicação novamente do lado direito, ou seja, 10i, teremos que multiplicar ambos os lados da equação por

\frac{1}{10}

ficando com:

\frac{1}{10} \frac{-C + 15660}{C} = \frac{1}{10}10i

Fazendo as contas como anteriormente, ficaremos com:

\frac{-C + 15660}{10C} = i

Trocando os membros desta equação, finalmente teremos o que está procurando:

i = \frac{-C + 15660}{10C}

ou melhor ainda:

i = \frac{15660 - C}{10C}

Mais detalhado do que isso acho difícil.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?



cron