• Anúncio Global
    Respostas
    Exibições
    Última mensagem

muito divertido

Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

muito divertido

Mensagempor GeRmE » Dom Out 31, 2010 14:20

aí pessoal, esse exercício caiu em uma prova minha e, cá entre nós,resolve-se em três linhas, mas quem elaborou foi muito criativo:

Y= \sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2}...}}}}}}}}
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando

Re: muito divertido

Mensagempor Pedro123 » Dom Out 31, 2010 22:35

kkkk minha resposta deu 2. está certo?

fiz assim Y = 2^1/2 . 2^1/4 . 2^1/8.... = 2^1/2+1/4+1/8.... -->
Pela soma de PG infinita temos:

S = 1/2 / 1-1/2 = 1

Portanto Y = 2
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: muito divertido

Mensagempor GeRmE » Sex Nov 05, 2010 19:05

seu chato XD
é isso mesmo, mas o meu método é mais legal:
eleva-se os dois lados ao quadrado e têm-se:
Y^2= \left(\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2}...}}} \right)^2
depois:
Y^2=2.(\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2}...}}} )
se Y=\sqrt[2]{2.\sqrt[2]{2.\sqrt[2]{2.\sqrt[2]{2.\sqrt[2]{2.\sqrt[2]{2.}...}}}}}
então Y^2=2.Y
logo Y.Y=2.Y
e Y=2
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando

Re: muito divertido

Mensagempor Pedro123 » Sex Nov 19, 2010 12:10

hahahaha realmente, seu método é mais criativo, não pensei nisso hsuahuahs
mas é isso ae abrass hahaha
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: muito divertido

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:41

GeRmE escreveu: cá entre nós,resolve-se em três linhas

Qual o tamanho de suas linhas? Não consigo colocar um expressão deste tamanho numa linha só. lol

Mas fiz uma terceira solução
GeRmE escreveu:Y= \sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2}...}}}}}}}}

Y=\sqrt{2Y}\iff Y^2-2Y=0 \iff Y(Y-2)=0
Y'=0 e Y''=2.
OPA! Alguma coisa errada. Por que Y não pode ser igual a 0?
alexandre32100
 

Re: muito divertido

Mensagempor MarceloFantini » Sex Nov 19, 2010 14:22

Impossível extrair a raíz quadrada de um número diferente de zero e obter zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: muito divertido

Mensagempor GeRmE » Sex Nov 19, 2010 16:36

bom, pelo menos o 2 apareceu. ao final de um exercício desses o certo é verificar, o que fica meio complicado...
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando

Re: muito divertido

Mensagempor alexandre32100 » Sex Nov 19, 2010 17:32

Fantini escreveu:Impossível extrair a raíz quadrada de um número diferente de zero e obter zero.

Mas se 0= \sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2}...}}}}}}}}, é lógico dizer também que 2\cdot0={2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2\sqrt[2]{2}...}}}}}}}, ou seja, estamos extraindo a raiz quadrada de 0, logo a expressão é igual a 0.
alexandre32100
 

Re: muito divertido

Mensagempor MarceloFantini » Sex Nov 19, 2010 17:36

Não, não é, pois \sqrt{2 \sqrt{2 \sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2 ...}}}}}}}}}} \neq 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: muito divertido

Mensagempor GeRmE » Sex Nov 19, 2010 18:49

amigo, o Zero é um número anormal. quer um exemplo? veja: 2 = 3 pois 0.2=0.3
quando a resposta der zero, desconfie
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando


Voltar para Desafios Enviados

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.