Página 1 de 1

Indeterminações

MensagemEnviado: Sex Nov 27, 2009 19:23
por Luiz Augusto Prado
Olá Pessoa!
Estou começando a colecionar questões que possam ferrar alunos. Sendo assim, gostaria de uma ajuda de vcs. Tenho uma questão: Quero saber todas as formas possíveis para a solução desta indeterminação:
\lim_{x \to 2} \frac{\sqrt{x-2}}{\sqrt[3]{x^2-4}}

Re: Indeterminações

MensagemEnviado: Sáb Nov 28, 2009 18:19
por Elcioschin
Neste caso é muito simples

V(x - 2)/V(x² - 4) = V(x - 2)/V[(x - 2)*(x + 2)] = [V(x - 2)/V(x - 2)]*[1/V(x + 2)] = 1/V(x + 2)

Para x = 2 ----> 1/V(4) = 1/2

Re: Indeterminações

MensagemEnviado: Sáb Nov 28, 2009 21:13
por Luiz Augusto Prado
Acho que este limite é -infinito quando x tende a 2 pela direita.
veja que o denominador é uma raiz cubica.
eu coloquei estes radicais diferentes porque quero obrigar o estudante a mudar a formula antes de usar L'Hopital. Isso se ele quiser usar L'Hopital, pois não é obrigatório.

Re: Indeterminações

MensagemEnviado: Dom Nov 29, 2009 11:15
por Elcioschin
Luiz

Desculpe o meu engano: eu não tinha visto que era raiz cúbica no denominador.

²V(x - 2)/³V(x² - 4) = ²V(x - 2)/³V[(x - 2)*(x + 2)] = ²V(x - 2)/[³V(x - 2)]*[³V(x + 2)] =

= (x - 2)^(1/2)/[(x - 2)^(1/3)]*[(x + 2)^(1/3)] = [(x - 2)^(1/2 - 1/3)/(x + 2)^(1/3) = (x - 2)^(1/6)/(x + 2)^(1/3)

Aplicando limite para x = 2 -----> 0/4^(1/3) = 0

Re: Indeterminações

MensagemEnviado: Seg Nov 30, 2009 11:20
por Luiz Augusto Prado
vc escreveu:

²V(x - 2)/³V(x² - 4) = ²V(x - 2)/³V[(x - 2)*(x + 2)] = ²V(x - 2)/[³V(x - 2)]*[³V(x + 2)] =
\frac{\sqrt{x-2}}{\sqrt[3]{x²-4}}=\frac{\sqrt{x-2}}{\sqrt[3]{(x-2)*(x+2)}}=\frac{\sqrt{x-2}}{\sqrt[3]{x-2}*\sqrt[3]{x+2}} =\frac{{(x-2)}^{\frac{1}{6}}}{\sqrt[3]{x+2}} = \frac{0}{\sqrt[3]{4}} = 0

Muito boa sua solução!

Tentei por outro modo aplicando L'Hopital assim:
\frac{\sqrt{x-2}}{\sqrt[3]{x^2-4}} = \frac{{e}^{\frac{ln(x-2)}{2}}}{{e}^{\frac{ln(x^2-4)}{3}}} = {e}^{\frac{ln(x-2)}{2}-\frac{ln(x^2-4)}{3}}} = {e}^{\frac{3ln(x-2)}{6}-\frac{2ln(x^2-4)}{6}}} = {e}^{\frac{ln((x-2)^3)}{6}-\frac{ln((x^2-4)^2)}{6}} = e^{\frac{ln((x-2)^3)}{6}-\frac{ln((x^2-4)^2)}{6}} = e^{\frac{1}{6}*ln\left(\frac{(x-2)^3}{(x^2-4)^2}\right)} = e^{\frac{1}{6}*ln\left(\frac{x^3 - 6x^2 + 12x - 8}{x^4-8x^2 + 16}\right)}

Onde meu limite passaria a depender de:
\frac{x^3 - 6x^2 + 12x - 8}{x^4-8x^2 + 16}

Onde apliquei L'Hopital duas vezes:
D1(x) = \frac{3x^2-12x+12}{4x^3-16x} \Rightarrow  D2(x) = \frac{6x-12}{12x^2-16} = \frac{0}{32} = 0
Se existe um resultado para um valor que tende a zero pela direita em ln(0), este valor é -infinito.

Outra forma:
\sqrt[6]{\lim_{x \to 2} \left(\frac{\sqrt{x-2}}{\sqrt[3]{x^2-4}} \right)^6 } \right} = \sqrt[6]{ \lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x^4-8x^2 + 16} }