• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Reticulados!

Dúvidas pendentes de estatística ou outras áreas (física, química etc), aguardando bacharéis dispostos e habilitados a ajudar.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Reticulados!

Mensagempor Catalao » Ter Out 16, 2012 22:20

Galera provavelmente estou postando no lugar errado, mas qualquer coisa pode mudar o local do post...
Bom tive uma palestra sobre reticulados e gostei e tal... só q ainda n to entendendo mto bem...
Alguem pode me explicar de maneita simples para que serve o estudo de reticulados na mat?
Tem alguma coisa a ver com computação ou telecomunicação?
Em que "área" é aplicado os reticulados?
Se não expliquei mto bem por favor me falem...
Grata a quem me ajudar.
Catalao
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mai 09, 2012 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Reticulados!

Mensagempor Neperiano » Qua Nov 07, 2012 16:50

Olá

Catalão.

Reticulados pode ser usado na Engenharia Mecânica e de Materiais, por exemplo.

No caso, seria reticulado cristalino.

Pense no átomo, agora pense nos eletrons, protons, neutrons, nos materiais, esses "átomos" se unem em formas geométricas conhecidas, como equilateros, cubicas, etc. Então se formam em figuras geometricas.

Acredito que na matemática, deve ser algo haver com isto ai, deve se formar formas geométricas.

Tem muito material na internet sobre isso, se quiser pesquisar, vá no google.

Att
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Dúvidas Pendentes (aguardando novos colaboradores)

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}