Dúvidas pendentes de estatística ou outras áreas (física, química etc), aguardando bacharéis dispostos e habilitados a ajudar.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por pkutwak » Dom Jun 12, 2011 12:37
Foi passado este exercício:
Se é domingo, Maria vai à missa.
Maria não foi à missa.
Logo, Não é domingo.
Montar a tabela verdade.
Entendi p -->q, o problema está em ~p, ~q.
Não entendi porque ~p foi colocado assim:
F
V
V
V
e ~q
F
F
V
V
Alguem pode ajudar-me a resolver está questão?
Obrigado.
-
pkutwak
- Usuário Ativo
-
- Mensagens: 12
- Registrado em: Ter Fev 23, 2010 23:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informática
- Andamento: formado
por deangelo » Dom Jun 12, 2011 14:17
Veja como fica a tabela-verdade das proposições p => q e ~q => ~p
P | Q | P => Q
---+---+--------
V | V | V
V | F | F
F | V | V
F | F | V
P | Q | ~Q => ~P
---+---+----------
V | V | V
V | F | F
F | V | V
F | F | V
Note que p => q e ~q => ~p possuem a mesma tabela-verdade, logo são equivalentes. Portanto, é válido substituir qualquer uma das proposições pela outra que o raciocínio ainda continua o mesmo.
"É por intuição que descobrimos, e pela lógica que provamos". [Henri Poincaré]
-
deangelo
- Usuário Ativo
-
- Mensagens: 10
- Registrado em: Seg Out 11, 2010 03:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática-UFES
- Andamento: cursando
-
Voltar para Dúvidas Pendentes (aguardando novos colaboradores)
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercício de raciocínio lógico
por jaquecox » Seg Mai 30, 2011 21:15
- 1 Respostas
- 2501 Exibições
- Última mensagem por Molina
Ter Mai 31, 2011 02:29
Lógica
-
- raciocinio lógico
por TEKA » Qui Mar 25, 2010 20:30
- 3 Respostas
- 8729 Exibições
- Última mensagem por TEKA
Sex Mar 26, 2010 10:44
Álgebra Elementar
-
- Raciocínio lógico
por Abelardo » Seg Mar 07, 2011 05:03
- 1 Respostas
- 7568 Exibições
- Última mensagem por Renato_RJ
Seg Mar 07, 2011 06:20
Álgebra Elementar
-
- Raciocínio lógico!
por GABRUEL » Sáb Jul 16, 2011 00:09
- 2 Respostas
- 2792 Exibições
- Última mensagem por GABRUEL
Sáb Jul 16, 2011 00:43
Álgebra Elementar
-
- Raciocínio Lógico
por glau » Ter Nov 08, 2011 13:26
- 2 Respostas
- 2716 Exibições
- Última mensagem por MarceloFantini
Ter Nov 08, 2011 16:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {
} e B = {
}, então o número de elementos A
B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {
} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {
} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.