• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidades

Dúvidas pendentes de estatística ou outras áreas (física, química etc), aguardando bacharéis dispostos e habilitados a ajudar.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

probabilidades

Mensagempor tatimamedes » Sex Mar 01, 2013 00:57

Estou com dúvida no seguinte exercício:

Uma caixa contém 20 canetas iguais, das quais 7 são defeituosas, e outra caixa contém 12, das quais 4 são defeituosas. Uma caneta é retirada aleatoriamente de cada caixa. As probabilidades de que ambas não sejam defeituosas e de que uma seja perfeita e a outra não são respectivamente de:
A. 88,33% e 45,00%
B. 43,33% e 45,00%
C. 43,33% e 55,00%
D. 23,33% e 45,00%
E. 23,33% e 55,00%


Justifique sua resposta:

Resposta:
Caixa A= 20 Canetas, dessas 7 são defeituosas
Caixa B= 12 Canetas, dessas 4 são defeituosas

P[canetas boas] =
Probabilidade [canetas boas caixa A E canetas boas caixa B] =
P(canetas boas em A) = = 13/20=0,65 ou 65%
P(canetas boas em B)= =8/12=0,66666666ou 66,67%

Probabilidade [canetas boas caixa A E canetas boas caixa B]=0,65*0,66666666=0,43333333*100=43,33%
Resp. 1: As probabilidades de que ambas não sejam defeituosas são de 43,33%

2- Probabilidade [peça fabricada E peça defeituosa] = ??


Qual a probabilidade de que uma caneta escolhida ao acaso seja perfeita e a outra não?

Obs. Com a resolução da 1ª parte sei que a resposta para esse exercício será a B ou a C.
tatimamedes
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 01, 2013 00:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração de Empresas
Andamento: cursando

Re: probabilidades

Mensagempor young_jedi » Sex Mar 01, 2013 22:57

vamos separar em dois casos
primeiro: se a caneta defeituosa for retirada da caixa de 20 canetas e caneta boa da caixa de 12
a probabilidade deste evento é

\frac{7}{20}.\frac{8}{12}=23,33\%

agora o contrario se a caneta boa for retirada da caixa de 20 canetas e a caneta defeituosa da caixa de 12
a probabilidade deste evento é

\frac{13}{20}.\frac{4}{12}=21,67\%

somando os dois

23,33+21,67=45\%
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: probabilidades

Mensagempor tatimamedes » Sex Mar 01, 2013 23:11

Entendi. Sua explicação foi muito boa.

Eu resolvi assim:

1- P[canetas boas] =
Probabilidade [canetas boas caixa A E canetas boas caixa B] =
P(canetas boas em A) = = 13/20=0,65 ou 65%
P(canetas boas em B)= =8/12=0,66666666ou 66,67%

Probabilidade [canetas boas caixa A E canetas boas caixa B]=0,65*0,66666666=0,43333333*100=43,33%
Resp. 1: As probabilidades de que ambas não sejam defeituosas são de 43,33%

2- Probabilidade [peça fabricada E peça defeituosa] =
Probabilidade [canetas defeituosas caixa A E canetas boas caixa A]+ Probabilidade [canetas defeituosas caixa B E canetas boas caixa B]=
7/20*13/20=0,35*0,65=0,2275 +
4/12*8/12=0,333333*0,6666666=0,222222 = 0,44972222*100=44,972222=~45%
Resp. 2: As probabilidades de que uma seja perfeita e a outra não são de 45%

Será que o meu raciocínio está errado?
tatimamedes
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 01, 2013 00:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração de Empresas
Andamento: cursando

Re: probabilidades

Mensagempor young_jedi » Sex Mar 01, 2013 23:22

a primeira parte esta certo

agora a segunda não entendi porque voce multiplicou as probabilidade de se retirar uma boa da caixa A pela se retirar uma ruim da Caixa A
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: probabilidades

Mensagempor anabatista » Qua Abr 10, 2013 01:42

Vamos passo a passo...

primeiro determinamos os eventos
A= caneta da caixa A sem defeito P(A)= 7/20
a= caneta da caixa A com defeito P(a)=13/20
B= caneta da caixa B sem defeito P(B)= 4/12
b= caneta da caixa B com defeito P(b) = 8/12


A primeira parte está correta!

QUando se fala em probabilidade de ocorrer X e Y, ao mesmo tempo, utiliza-se P(X\cap Y) que é dada pelo produto das probabilidades.
Logo a probabilidade de ambas não serem defeituosas é P(A\cap B)= \frac{13}{20}.\frac{8}{12}= 43,33%


Parte 2:

Quando se pede para calcular a probabilidade de uma ser defeituosa e outra boa, não se determina de qual caixa vem logo,
a defeituosa pode vir da caixa A OU da caixa B. Quando se usa o termo OU, utiliza-se P(X\cup Y) que é dada pela soma das probabilidades.

Então teriamos as seguintes probabilidades,
ter defeito na caneta da caixa A E não ter na B P(a\cap B) OU (+) não ter defeito na A e ter na B P(A\cap b)
P(a\cap B) + P(A\cap b) = \frac{13}{20}.\frac{4}{12} + \frac{7}{20}.\frac{8}{12}= 45%

Resposta Letra B
anabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Abr 08, 2013 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: probabilidades

Mensagempor tatimamedes » Qua Abr 10, 2013 15:43

Muito obrigada pela ajuda.
tatimamedes
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 01, 2013 00:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração de Empresas
Andamento: cursando


Voltar para Dúvidas Pendentes (aguardando novos colaboradores)

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D