• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Piso de um número

Piso de um número

Mensagempor anfran1 » Sex Jun 29, 2012 13:27

Dado um numero real x, o piso \dagger x\dagger de x é definido como o maior número inteiro \dagger x\dagger que é menor ou igual a x.
Por exemplo \dagger 5,2\dagger=5 ; \dagger \pi\dagger=3 ; \dagger 2\dagger=2.
Qual o valor da soma \dagger1\dagger +\dagger\sqrt[2]{2}\dagger + \dagger\sqrt[2]{3}\dagger+...+\dagger\sqrt[2]{200}\dagger?

No começo eu fui somando os valores facilmente mas então percebi que perderia muito tempo já que esta questão caiu nas olímpiadas aqui da minha região. Como faço para resolvê-la?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Piso de um número

Mensagempor MarceloFantini » Seg Jul 02, 2012 23:49

Perceba que sempre teremos que \lfloor \sqrt{n^2} \rfloor será sempre n até chegarmos em (n+1)^2. Então, por exemplo \lfloor \sqrt{16} \rfloor + \lfloor \sqrt{17} \rfloor + \ldots + \lfloor \sqrt{24} \rfloor = 4 + 4 + \ldots + 4 = 4 \cdot 9 = 36. Tente aplicar o mesmo raciocínio para outros intervalos. Existe uma forma de generalizar para os intervalos, procure.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Piso de um número

Mensagempor anfran1 » Dom Jul 08, 2012 10:52

MarceloFantini escreveu:Perceba que sempre teremos que \lfloor \sqrt{n^2} \rfloor será sempre n até chegarmos em (n+1)^2. Então, por exemplo \lfloor \sqrt{16} \rfloor + \lfloor \sqrt{17} \rfloor + \ldots + \lfloor \sqrt{24} \rfloor = 4 + 4 + \ldots + 4 = 4 \cdot 9 = 36. Tente aplicar o mesmo raciocínio para outros intervalos. Existe uma forma de generalizar para os intervalos, procure.


Já entendi. Por exemplo quando chegarmos ao piso de \sqrt[2]{25} basta irmos somando 5 até chegarmos no piso da \sqrt[2]{36} e assim por diante.
Quanto à generalização tentei fazer por conta própria e percebi que de \sqrt[2]{16} até \sqrt[2]{24} há 9 números(chamemos esse 9 de {x}_{1}).
Entre \sqrt[2]{25} até \sqrt[2]{35} há 11 números (seja 11 = {x}_{2}, então {x}_{2}={x}_{1}+2.
Entre \sqrt[2]{36} até \sqrt[2]{48} há 13 números ({x}_{3}={x}_{2}+ 2). Então minha generalização é a seguinte : {x}_{n}={x}_{n-1}+ 2
Está correto?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: