• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução matemática

Indução matemática

Mensagempor jogurgel » Qua Abr 13, 2016 16:22

Alguém pode me ajudar a provar isso por indução?

\left|\sum_{i=1}^{n}{x}_{i}\right|\leq\sum_{i=1}^{n}\left|{x}_{i} \right|


Obrigado!
jogurgel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 13, 2016 16:10
Formação Escolar: GRADUAÇÃO
Área/Curso: MATEMATICA
Andamento: cursando

Re: Indução matemática

Mensagempor adauto martins » Sex Abr 15, 2016 17:06

p/i=1\Rightarrow \left|{x}_{1} \right|\succ {x}_{1}...
p/i=1,2\Rightarrow \left|{x}_{1}+{x}_{2} \right|\succ {x}_{1}+{x}_{2}...
prova:
{({x}_{1}+{x}_{2})}^{2}=({x}_{1})^{2}+2.{x}_{1}.{x}_{2}+{({x}_{2})}^{2}\preceq {\left|{x}_{1} \right|}^{2}+2.\left|{x}_{1} \right|.\left|{x}_{2} \right|+{\left|{x}_{2} \right|}^{2}={\left|{x}_{1}+{x}_{2} \right|}^{2}\Rightarrow \left|{x}_{1}+{x}_{2} \right|\succeq {x}_{1}+{x}_{2}...
vamos tomar como verdadeira a sentença...\left|{x}_{1}+{x}_{2}+...+{x}_{k} \right|\succeq {x}_{1}+{x}_{2}+...+{x}_{k}...logo p/\left|{x}_{1}+{x}_{2}+...+{x}_{k}+{x}_{k+1} \right|\succeq \left|{x}_{1}+{x}_{2}+{x}_{k} \right|+\left|{x}_{k+1} \right|\succeq ({x}_{1}+{x}_{2}+...+{x}_{k})+{x}_{k+1}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Indução matemática

Mensagempor adauto martins » Seg Abr 18, 2016 16:03

uma correçao...
a forma q. resolvi esses exercicio esta incorreta,vamos a correçao:
2)
{\left|{x}_{1}+{x}_{2} \right|}^{2}={({x}_{1}+{x}_{2}})^{2}={{x}_{1}}^{2}+2.{x}_{1}.{x}_{2}+{{x}_{2}}^{2}\preceq {\left|{x}_{1} \right|}^{2}+2.\left|{x}_{1} \right|.\left|{x}_{2} \right|+{\left|{x}_{2} \right|}^{2}\preceq {(\left|{x}_{1}+{x}_{2} \right|})^{2}\Rightarrow \left|{x}_{1}+{x}_{2} \right|\preceq \left|{x}_{1} \right|+\left|{x}_{2} \right|...
a hipotese de induçao é:
\left|{x}_{1}+{x}_{2}+...+{x}_{k} \right|\preceq \left|{x}_{1} \right|+\left|{x}_{2} \right|+...+\left|{x}_{k} \right|...
entao:
\left|{x}_{1}+{x}_{2}+...+{x}_{k}+{x}_{k+1} \right|\preceq \left|{x}_{1}+{x}_{2}+...+{x}_{k} \right|+\left|{x}_{k+1} \right|,usando a hipotese de induçao,teremos...
\left|{x}_{1}+{x}_{2}+...+{x}_{k}+{x}_{k+1} \right|\preceq \left|{x}_{1}+{x}_{2}+...+{x}_{k} \right|+\left|{x}_{k+1} \right|\preceq \left|{x}_{1} \right|+\left|{x}_{2} \right|+...+\left|{x}_{k} \right|+\left|{x}_{k+1} \right|...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Indução matemática

Mensagempor jogurgel » Seg Abr 18, 2016 20:48

Ô amigo.. brigadão mesmo!
jogurgel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 13, 2016 16:10
Formação Escolar: GRADUAÇÃO
Área/Curso: MATEMATICA
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.