• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo 2] Sequências numéricas

[Cálculo 2] Sequências numéricas

Mensagempor Larissa28 » Seg Ago 17, 2015 23:21

Calcule:
\lim_{x\rightarrow\propto} \frac{{a}_{n+1}}{n!}
Sendo:
{a}_{n} = \frac{n!}{{n}^{n}}
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [Cálculo 2] Sequências numéricas

Mensagempor nakagumahissao » Seg Ago 17, 2015 23:57

Resolução:\lim_{n \rightarrow \infty} \frac{a_{n+1}}{n!} = \lim_{n \rightarrow \infty} \frac{\frac{n!}{n^{n}}}{n!} = \lim_{n \rightarrow \infty} \frac{n!}{n^{n}}\frac{1}{n!} = \lim_{n \rightarrow \infty} \frac{1}{n^{n}}


Vamos calcular alguns valores desta sequência:

\left(1, \; \frac{1}{4}, \; \frac{1}{27}, \; \frac{1}{256}, \; ... \right)

Como percebemos, os valores desta sequência convergem rapidamente para zero.

Assim:

\lim_{n \rightarrow \infty} \frac{1}{n^{n}} = 0

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Cálculo 2] Sequências numéricas

Mensagempor adauto martins » Qua Ago 19, 2015 11:06

pegando um gancho com o colega naka,podemos ter tbem:
\lim_{n\rightarrow \infty}(1/{n}^{n})=\lim_{n\rightarrow \infty}(1/n).(1/{n}^{n-1})=\lim_{n\rightarrow \infty}(1/n).(1/{n}^{n-1})=0.(1/{n}^{n-1})=0 ou ainda...
\lim_{n\rightarrow \infty}(1/{n}^{n})=\lim_{n\rightarrow \infty}({1/n})^{n}=({\lim_{n\rightarrow \infty}1/n})^{n}={0}^{n}=0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 700
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: