• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo 2] Sequências numéricas

[Cálculo 2] Sequências numéricas

Mensagempor Larissa28 » Seg Ago 17, 2015 23:21

Calcule:
\lim_{x\rightarrow\propto} \frac{{a}_{n+1}}{n!}
Sendo:
{a}_{n} = \frac{n!}{{n}^{n}}
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [Cálculo 2] Sequências numéricas

Mensagempor nakagumahissao » Seg Ago 17, 2015 23:57

Resolução:\lim_{n \rightarrow \infty} \frac{a_{n+1}}{n!} = \lim_{n \rightarrow \infty} \frac{\frac{n!}{n^{n}}}{n!} = \lim_{n \rightarrow \infty} \frac{n!}{n^{n}}\frac{1}{n!} = \lim_{n \rightarrow \infty} \frac{1}{n^{n}}


Vamos calcular alguns valores desta sequência:

\left(1, \; \frac{1}{4}, \; \frac{1}{27}, \; \frac{1}{256}, \; ... \right)

Como percebemos, os valores desta sequência convergem rapidamente para zero.

Assim:

\lim_{n \rightarrow \infty} \frac{1}{n^{n}} = 0

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 380
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Cálculo 2] Sequências numéricas

Mensagempor adauto martins » Qua Ago 19, 2015 11:06

pegando um gancho com o colega naka,podemos ter tbem:
\lim_{n\rightarrow \infty}(1/{n}^{n})=\lim_{n\rightarrow \infty}(1/n).(1/{n}^{n-1})=\lim_{n\rightarrow \infty}(1/n).(1/{n}^{n-1})=0.(1/{n}^{n-1})=0 ou ainda...
\lim_{n\rightarrow \infty}(1/{n}^{n})=\lim_{n\rightarrow \infty}({1/n})^{n}=({\lim_{n\rightarrow \infty}1/n})^{n}={0}^{n}=0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)