• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sequencias] Calculo do limite da sequencia

[Sequencias] Calculo do limite da sequencia

Mensagempor Larissa28 » Qua Ago 05, 2015 01:09

Calcule o limite, se existir, (se não, justifique) da sequencia de termo geral

an = \sqrt[n]{{2}^{1+3n}}
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [Sequencias] Calculo do limite da sequencia

Mensagempor nakagumahissao » Qua Ago 05, 2015 16:32

{a}_{n} = \sqrt[n]{{2}^{1+3n}}

{a}_{2} = \sqrt[2]{{2}^{7}} = \sqrt[2]{{2}^{6} \times 2} = 2^{3} \sqrt[2]{2} = 8\sqrt[2]{2}

{a}_{3} = \sqrt[3]{{2}^{10}} = \sqrt[3]{{2}^{9} \times 2} = 2^{3} \sqrt[3]{2} = 8\sqrt[3]{2}

{a}_{4} = \sqrt[4]{{2}^{13}} = \sqrt[4]{{2}^{12} \times 2} = 2^{3} \sqrt[4]{2} = 8\sqrt[4]{2}

e assim sucessivamente. Para n = n, teremos:

{a}_{n} = 8\sqrt[n]{2}

Assim:

{a}_{n} = \sqrt[n]{{2}^{1+3n}} = 8\sqrt[n]{2}

Vejamos alguns valores para:

Seja {b}_{n} = \sqrt[n]{2}

n = 2 \Rightarrow {b}_{2} = \sqrt[2]{2} = 1,4142
n = 3 \Rightarrow {b}_{3} = \sqrt[3]{2} = 1,2599
n = 4 \Rightarrow {b}_{4} = \sqrt[4]{2} = 1,1892
n = 5 \Rightarrow {b}_{5} = \sqrt[5]{2} = 1,1486

Ou seja, {b}_{n} é decrescente e portanto {a}_{n} também é decrescente.

Sendo decrescente e positiva, suspeitamos agora que a sequêcia seja limitada inferiormente, pois {b}_{n} parece convergir para 1 e {a}_{n} parece estar convergindo para 8. Então:

\lim_{n \rightarrow \infty }  8\sqrt[n]{2} = \lim_{n \rightarrow \infty }  8 \cdot 2^{\frac{1}{n}} = \lim_{n \rightarrow \infty }  8 * \lim_{n \rightarrow \infty }  {2}^{\frac{1}{n}} = 8 \times 1 = 8

Pois, à medida que n "tende" ao infinito, n se torna um número "grande" e 1 dividido por esse número cada vez "maior", vai se aproximando de zero e 2 elevado à zero vai se tornar 1 e 1 vezes 8 dá 8.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 384
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Sequencias] Calculo do limite da sequencia

Mensagempor gshickluvx » Ter Nov 03, 2015 01:54

I understand you to say that I have experienced.
gshickluvx
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 03, 2015 01:23
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron