• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sequencias] Calculo do limite da sequencia

[Sequencias] Calculo do limite da sequencia

Mensagempor Larissa28 » Qua Ago 05, 2015 01:09

Calcule o limite, se existir, (se não, justifique) da sequencia de termo geral

an = \sqrt[n]{{2}^{1+3n}}
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [Sequencias] Calculo do limite da sequencia

Mensagempor nakagumahissao » Qua Ago 05, 2015 16:32

{a}_{n} = \sqrt[n]{{2}^{1+3n}}

{a}_{2} = \sqrt[2]{{2}^{7}} = \sqrt[2]{{2}^{6} \times 2} = 2^{3} \sqrt[2]{2} = 8\sqrt[2]{2}

{a}_{3} = \sqrt[3]{{2}^{10}} = \sqrt[3]{{2}^{9} \times 2} = 2^{3} \sqrt[3]{2} = 8\sqrt[3]{2}

{a}_{4} = \sqrt[4]{{2}^{13}} = \sqrt[4]{{2}^{12} \times 2} = 2^{3} \sqrt[4]{2} = 8\sqrt[4]{2}

e assim sucessivamente. Para n = n, teremos:

{a}_{n} = 8\sqrt[n]{2}

Assim:

{a}_{n} = \sqrt[n]{{2}^{1+3n}} = 8\sqrt[n]{2}

Vejamos alguns valores para:

Seja {b}_{n} = \sqrt[n]{2}

n = 2 \Rightarrow {b}_{2} = \sqrt[2]{2} = 1,4142
n = 3 \Rightarrow {b}_{3} = \sqrt[3]{2} = 1,2599
n = 4 \Rightarrow {b}_{4} = \sqrt[4]{2} = 1,1892
n = 5 \Rightarrow {b}_{5} = \sqrt[5]{2} = 1,1486

Ou seja, {b}_{n} é decrescente e portanto {a}_{n} também é decrescente.

Sendo decrescente e positiva, suspeitamos agora que a sequêcia seja limitada inferiormente, pois {b}_{n} parece convergir para 1 e {a}_{n} parece estar convergindo para 8. Então:

\lim_{n \rightarrow \infty }  8\sqrt[n]{2} = \lim_{n \rightarrow \infty }  8 \cdot 2^{\frac{1}{n}} = \lim_{n \rightarrow \infty }  8 * \lim_{n \rightarrow \infty }  {2}^{\frac{1}{n}} = 8 \times 1 = 8

Pois, à medida que n "tende" ao infinito, n se torna um número "grande" e 1 dividido por esse número cada vez "maior", vai se aproximando de zero e 2 elevado à zero vai se tornar 1 e 1 vezes 8 dá 8.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Sequencias] Calculo do limite da sequencia

Mensagempor gshickluvx » Ter Nov 03, 2015 01:54

I understand you to say that I have experienced.
gshickluvx
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 03, 2015 01:23
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.