• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sequencias] Calculo do limite da sequencia

[Sequencias] Calculo do limite da sequencia

Mensagempor Larissa28 » Qua Ago 05, 2015 01:09

Calcule o limite, se existir, (se não, justifique) da sequencia de termo geral

an = \sqrt[n]{{2}^{1+3n}}
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [Sequencias] Calculo do limite da sequencia

Mensagempor nakagumahissao » Qua Ago 05, 2015 16:32

{a}_{n} = \sqrt[n]{{2}^{1+3n}}

{a}_{2} = \sqrt[2]{{2}^{7}} = \sqrt[2]{{2}^{6} \times 2} = 2^{3} \sqrt[2]{2} = 8\sqrt[2]{2}

{a}_{3} = \sqrt[3]{{2}^{10}} = \sqrt[3]{{2}^{9} \times 2} = 2^{3} \sqrt[3]{2} = 8\sqrt[3]{2}

{a}_{4} = \sqrt[4]{{2}^{13}} = \sqrt[4]{{2}^{12} \times 2} = 2^{3} \sqrt[4]{2} = 8\sqrt[4]{2}

e assim sucessivamente. Para n = n, teremos:

{a}_{n} = 8\sqrt[n]{2}

Assim:

{a}_{n} = \sqrt[n]{{2}^{1+3n}} = 8\sqrt[n]{2}

Vejamos alguns valores para:

Seja {b}_{n} = \sqrt[n]{2}

n = 2 \Rightarrow {b}_{2} = \sqrt[2]{2} = 1,4142
n = 3 \Rightarrow {b}_{3} = \sqrt[3]{2} = 1,2599
n = 4 \Rightarrow {b}_{4} = \sqrt[4]{2} = 1,1892
n = 5 \Rightarrow {b}_{5} = \sqrt[5]{2} = 1,1486

Ou seja, {b}_{n} é decrescente e portanto {a}_{n} também é decrescente.

Sendo decrescente e positiva, suspeitamos agora que a sequêcia seja limitada inferiormente, pois {b}_{n} parece convergir para 1 e {a}_{n} parece estar convergindo para 8. Então:

\lim_{n \rightarrow \infty }  8\sqrt[n]{2} = \lim_{n \rightarrow \infty }  8 \cdot 2^{\frac{1}{n}} = \lim_{n \rightarrow \infty }  8 * \lim_{n \rightarrow \infty }  {2}^{\frac{1}{n}} = 8 \times 1 = 8

Pois, à medida que n "tende" ao infinito, n se torna um número "grande" e 1 dividido por esse número cada vez "maior", vai se aproximando de zero e 2 elevado à zero vai se tornar 1 e 1 vezes 8 dá 8.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Sequencias] Calculo do limite da sequencia

Mensagempor gshickluvx » Ter Nov 03, 2015 01:54

I understand you to say that I have experienced.
gshickluvx
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 03, 2015 01:23
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59