• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[sequencia] Calcular limite de sequencia por definição

[sequencia] Calcular limite de sequencia por definição

Mensagempor amigao » Ter Abr 15, 2014 15:15

Olá pessoal não consegui fazer nada nesse exercicio alguem pode me ajudar??

Calcule o limite da seqüência dada e PROVE que a referida seqüência efetivamente converge para esse limite (ou diverge para +oo ou —oo, conforme o caso).
(segue a imagem do exercício)


grato.
Anexos
exer.JPG
exercicio
exer.JPG (10.17 KiB) Exibido 1337 vezes
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [sequencia] Calcular limite de sequencia por definição

Mensagempor e8group » Ter Abr 15, 2014 22:51

Tente provar que a sequência é limitada superiormente por 1 e inferiormente por 1/3 .

Para provar que a_n < 1 , basta notar que o número do numerador é sempre menor que do denominador e portanto o quociente é menor que 1 .

Para provar que a_n > 1/3 , note que

1 - 3\sqrt{n} \leq -2    \implies  n(1-3\sqrt{n}) \leq -2n  \implies  n(1-3\sqrt{n}) + 1  = n + 1 -3n\sqrt{n} \leq -2n + 1 < 0  \implies n+1 < 3n \sqrt{n}  \implies  3n^2 +n + 1 < 3(n^2 + n\sqrt{n})  ...


Ora, temos 1/3 < a_n < 1 para qualquer n natural . Então ,

a_n - 1/3 =|a_n - 1/3| < 1 -1/3 = 2/3 . Pondo , \epsilon = 2/3 e n_0 = 1 , obtemos

\epsilon > 0 tal que n \geq n_0 implica |a_n -1/3| < \epsilon .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [sequencia] Calcular limite de sequencia por definição

Mensagempor e8group » Qua Abr 16, 2014 00:55

e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [sequencia] Calcular limite de sequencia por definição

Mensagempor amigao » Seg Abr 21, 2014 15:42

santhiago escreveu:Tente provar que a sequência é limitada superiormente por 1 e inferiormente por 1/3 .

Para provar que a_n < 1 , basta notar que o número do numerador é sempre menor que do denominador e portanto o quociente é menor que 1 .

Para provar que a_n > 1/3 , note que

1 - 3\sqrt{n} \leq -2    \implies  n(1-3\sqrt{n}) \leq -2n  \implies  n(1-3\sqrt{n}) + 1  = n + 1 -3n\sqrt{n} \leq -2n + 1 < 0  \implies n+1 < 3n \sqrt{n}  \implies  3n^2 +n + 1 < 3(n^2 + n\sqrt{n})  ...


Ora, temos 1/3 < a_n < 1 para qualquer n natural . Então ,

a_n - 1/3 =|a_n - 1/3| < 1 -1/3 = 2/3 . Pondo , \epsilon = 2/3 e n_0 = 1 , obtemos

\epsilon > 0 tal que n \geq n_0 implica |a_n -1/3| < \epsilon .


---------------------
Muito obrigado!! Entendi
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [sequencia] Calcular limite de sequencia por definição

Mensagempor e8group » Dom Mai 11, 2014 17:09

amigao , cometi um erro , não sei por que fiz aquilo , a definição é clara. O fato de | a_n - 1/3| < 2/3 não implica que lim(a_n) = 1/3 . É claro que n \geq 1 \implies  | a_n - 1/3| < \epsilon sempre que \epsilon \geq 2/3(Vimos isto ) . Mas , se 0 < \epsilon < 2/3 ? Será que existe n_0  \in \mathbb{N} t.q n \geq n_0 \implies |a_n - 1/3| < \epsilon ?

Por definição lim(b_n) = L <  \infty  \iff  \forall \epsilon > 0 , \exists n_0(\epsilon) > 0  : \forall n \geq n_0(\epsilon) \implies  |b_n - L | < \epsilon . Isto deve funcionar para todo \epsilon > 0 e não apenas para um em particular conforme eu fiz .

Quando 0 < \epsilon <2/3 , parece complicado determinar um n_0 correspondente t.q . n \geq n_0  \implies | a_n - 1/3| < \epsilon . Entretanto , podemos limitar a_n (inferiormente e superiormente) por duas sequências convergente para 1/3 (em que a demostração seja mais simples ) e com isso pelo teorema do confronto (a_n ) \to 1/3 .

Já vimos que a_n \geq 1/3 e hoje afirmo que a_n \leq  \frac{1}{3} + \frac{1}{3\sqrt{n}}  ,  \forall n \geq 1 . (A verificação é simples , o denominador de a_n é sempre maior que 3n^2 , n \geq 1 , logo a relação de ordem inverte em relação ao recíproco )

Seja : b_n = 1/3 e c_n = \frac{1}{3\sqrt{n}} e d_n = b_n + c_n . Portanto , temos

b_n \leq a_n \leq b_n + c_n .

Provar a convergência de (c_n) é simples (comparado com (a_n) ) e provar a convergência de (b_n) trivial .

Provando isto acima d_n converge para a soma dos limites de b_n e c_n .

Para a resposta não ficar vaga , vou propor uma demostração para dois teoremas (acho mais fácil que provar que (a_n) converge [/tex] .

Teorema 1 :
Sejam M,L \in \mathbb{R} e a sequência (d_n) ; d_n := b_n + c_n [/tex] .
Se (c_n) \to M e (b_n) \to L então (d_n) \to M+ L .

Prova :

Da hipótese (c_n) e (b_n) convergirem , dado qualquer \epsilon > 0 existe N' ,N'' > 0 tais que

(1) | b_n - L |< \epsilon/2 sempre que n \geq N'

(2) | c_n - M |< \epsilon/2 sempre que n \geq N''

Agora |d_n - (L+M)| = | (b_n - L) + (c_n - M) |  \leq  |b_n - L| + |c_n -  M| . Podemos definir N = max\{N', N''\} com isso (1) e (2) são simultaneamente verdadeiros sempre que n \geq N , donde resulta por transitividade que |d_n -(L+M)| < \epsilon .

Teorema 2 :

Se existe N' \in \mathbb{N} tal que c_n \leq  a_n  \leq d_n para todo n \geq N' e lim(c_n) = lim(d_n) = L , logo lim(a_n) = L .Prova :

Dá hipótese lim(c_n) = lim(d_n) = L  \implies  \forall \epsilon > 0 , \exists N'' , N''' > 0   :

(1) n \geq N'' \implies     |c_n - L | < \epsilon

(2) n \geq N'''  \implies     |d_n - L | < \epsilon .

Seja N = max{N',N'', N'''\} , então (1), (2) e c_n \leq  a_n  \leq d_n são sempre verdadeiros quando n \geq N .

Como |c_n - L | < \epsilon  \iff    L - \epsilon  <  c_n  <  \epsilon +  L e |b_n - L | < \epsilon  \iff    L - \epsilon  <  b_n  <  \epsilon + L , então por transitividade L - \epsilon  <  a_n  <  \epsilon +  L sempre que n \geq N .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59