• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sequência] Determinação de um dos termos

[Sequência] Determinação de um dos termos

Mensagempor Gustavo Gomes » Dom Fev 16, 2014 17:04

Olá, pessoal!

O primeiro termo de uma sequência é 2013. A partir do segundo termo, cada termo dessa sequência é a soma dos quadrados dos algarismos do termo anterior.
Ex. o segundo termo é {2}^{2}+{0}^{2}+{1}^{2}+{3}^{2}=14.

Qual é o 2013º termo dessa sequência?

A resposta é 16.

Tentei mas não consegui estabelecer um padrão para a formação dessa sequência...

Aguardo, grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Sequência] Determinação de um dos termos

Mensagempor young_jedi » Dom Fev 16, 2014 20:03

vamos montar a sequencia

{2}^{2}+{0}^{2}+{1}^{2}+{3}^{2}=14

1^2+4^2=17

1^2+7^2=50

5^2+0^2=25

2^2+5^2=29

2^2+9^2=85

8^2+5^2=\boxed{89}

8^2+9^2=145

1^2+4^2+5^2=42

4^2+2^2=20

2^2+0^2=4

4^2=16

1^2+6^2=37

3^2+7^2=58

5^2+8^2=\boxed{89}

repare que nos temos 89 repetido, isso quer dizer que a partir daqui a sequencia se repete. Entre o primeiro 89 e o segundo tem 8 numeros, isso quer dizer que a sequencia se repete de oito em oito

ate chegar ao primeiro 89 foram 7 numeros

portanto 2013-7=2005

dividindo 2005 por oito obtemos como resto o numero 5, o quinto numero apos o 89 é o 16 portanto 16 é a resposta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59