• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão geométrica] Soma dos n primeiros termos

[Progressão geométrica] Soma dos n primeiros termos

Mensagempor fff » Ter Jan 07, 2014 13:30

Imagem
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Progressão geométrica] Soma dos n primeiros termos

Mensagempor fff » Ter Jan 07, 2014 17:45

fff escreveu:Imagem

Edit: Já resolvi :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Progressão geométrica] Soma dos n primeiros termos

Mensagempor Russman » Ter Jan 07, 2014 17:46

Uma progressão aritmética é uma sequência ordenada de números tal que o próximo é sempre o imediatamente anterior somado a uma constante. Assim, se a_n é o n-ésimo termo da sequência, a_1 o primeiro termo e r a constante de soma(chamada de razão da progressão aritmética), então

a_n = a_1 + (n-1)r.

Sem muita dificuldade conseguimos deduzir que a soma dos N primeiros termos dessa progressão a contar de a_1 é dada por

S_N = a_1+a_2+...+a_N = \frac{N}{2}(a_1 + a_N).

Na sua progressão, comparando com a forma geral e tomando \alpha = \log _2 \pi, temos

V_n = n \alpha \Rightarrow V_1=r= \alpha (substitua na forma geral V_1 = r= \alpha e confira.)

Portanto

S_N =\frac{N}{2}(a_1 + a_N) = \frac{N}{2}( \alpha + n \alpha) = \frac{\alpha}{2} (N^2+N)

Note que se \alpha = \log _2 então, pelas propriedades do logaritmo, temos

\alpha = \log _2 \pi \Rightarrow \frac{\alpha}{2} = \frac{1}{2} \log _2 \pi = \log _2 \pi^{1/2} = \log _2 \sqrt{\pi}.

Resolvido.
Editado pela última vez por Russman em Ter Jan 07, 2014 17:50, em um total de 3 vezes.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Progressão geométrica] Soma dos n primeiros termos

Mensagempor fff » Ter Jan 07, 2014 17:47

Russman escreveu:Uma progressão aritmética é uma sequência ordenada de números tal que o próximo é sempre o imediatamente anterior somado a uma constante. Assim, se a_n é o n-ésimo termo da sequência, a_1 o primeiro termo e r a constante de soma(chamada de razão da progressão aritmética), então

a_n = a_1 + (n-1)r.

Sem muita dificuldade conseguimos deduzir que a soma dos N primeiros termos dessa progressão a contar de a_1 é dada por

S_N = a_1+a_2+...+a_N = \frac{N}{2}(a_1 + a_N).

Na sua progressão, comparando com a forma geral e tomando \alpha = \log _2 i[/t\pex], temos

[tex]V_n = n \alpha \Rightarrow V_1=r= \alpha (substitua na forma geral V_1 = r=\alpha e confira.)

Portanto

S_N =\frac{N}{2}(a_1 + a_N) = \frac{N}{2}(\apha + n \alpha) = \frac{\alpha}{2}(N²+N)

Note que se \alpha = \log _2 i[/t\pex] então, pelas propriedades do logaritmo, temos

[tex]\alpha = \log _2 \pi \Rightarrow \frac{\alpha}{2} = \frac{1}{2} \log _2 \pi = \log _2 \pi^{1/2} = \log _2 \sqrt{\pi}.

Resolvido.

Muito obrigada :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: