por Russman » Ter Jan 07, 2014 17:46
Uma progressão aritmética é uma sequência ordenada de números tal que o próximo é sempre o imediatamente anterior somado a uma constante. Assim, se

é o

-ésimo termo da sequência,

o primeiro termo e

a constante de soma(chamada de razão da progressão aritmética), então

.
Sem muita dificuldade conseguimos deduzir que a soma dos

primeiros termos dessa progressão a contar de

é dada por

.
Na sua progressão, comparando com a forma geral e tomando

, temos

(substitua na forma geral

e confira.)
Portanto

Note que se

então, pelas propriedades do logaritmo, temos

.
Resolvido.
Editado pela última vez por
Russman em Ter Jan 07, 2014 17:50, em um total de 3 vezes.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por fff » Ter Jan 07, 2014 17:47
Russman escreveu:Uma progressão aritmética é uma sequência ordenada de números tal que o próximo é sempre o imediatamente anterior somado a uma constante. Assim, se

é o

-ésimo termo da sequência,

o primeiro termo e

a constante de soma(chamada de razão da progressão aritmética), então

.
Sem muita dificuldade conseguimos deduzir que a soma dos

primeiros termos dessa progressão a contar de

é dada por

.
Na sua progressão, comparando com a forma geral e tomando
![\alpha = \log _2 i[/t\pex], temos
[tex]V_n = n \alpha \Rightarrow V_1=r= \alpha \alpha = \log _2 i[/t\pex], temos
[tex]V_n = n \alpha \Rightarrow V_1=r= \alpha](/latexrender/pictures/49ae61e51d144b73849847b7013dc84e.png)
(substitua na forma geral

e confira.)
Portanto

Note que se

.
Resolvido.
Muito obrigada

-

fff
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sáb Dez 21, 2013 11:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Informática
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [P.A] DETERMINAR A SOMA ODS 60 PRIMEIROS TERMOS
por ramonalado » Ter Mar 12, 2013 23:35
- 3 Respostas
- 11316 Exibições
- Última mensagem por Russman

Qua Mar 13, 2013 22:46
Progressões
-
- Produto dos Termos da Progressão Geométrica
por petras » Ter Nov 22, 2016 20:33
- 0 Respostas
- 6459 Exibições
- Última mensagem por petras

Ter Nov 22, 2016 20:33
Progressões
-
- Progressão geométrica (Soma da PG infinita)
por kellykcl » Qui Fev 27, 2014 23:20
- 2 Respostas
- 3885 Exibições
- Última mensagem por alexandre_de_melo

Sex Fev 28, 2014 17:07
Progressões
-
- [Progressões] Encontrar os primeiros termos
por GrazielaSilva » Sex Set 28, 2012 11:28
- 2 Respostas
- 9532 Exibições
- Última mensagem por Yokotoyota

Qui Fev 04, 2016 03:09
Progressões
-
- [Série de Taylor] 4 primeiros termos
por Crist » Sáb Mar 09, 2013 17:52
- 2 Respostas
- 9717 Exibições
- Última mensagem por Crist

Dom Mar 10, 2013 23:12
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.