• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada Implícita

Derivada Implícita

Mensagempor ariclenesmelo » Ter Out 23, 2012 14:32

Um Navio deixa um Porto ao meio dia e desloca-se para o oeste com velocidade de 20 nos( um no e uma milha náutica por hora e 1 milha náutica eqüivale a aproximadamente 2km) Ao meio dia do dia seguinte um segundo navio deixa o mesmo Porto e viaja para noroeste a 15nos. Com que velocidade os navios se separam quando o segundo navio percorreu 90milhas náuticas.

Cheguei as seguintes conclusões x= 480 + 20t e y= 15t. Isso do ponto Inicial .. sei que quando o y percorrer 90 milhas o x estará há 600 milhas do Ponto Inicial.
ariclenesmelo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 21:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas para Internet
Andamento: formado

Re: Derivada Implícita

Mensagempor young_jedi » Ter Out 23, 2012 19:47

Temos que levar em consideraçãoa direção que cada um deles toma

se um sai para oeste e o outro para noroeste, e ambos partem em linha reta, o angulo entre a direção de ambos é 45º
portanto podemos construir um triangulo onde cada navio é um vertice e o porto é outro vertice, portanto um dos lados do triangulo é dado por x(t) e o outro é dado por y(t) essas duas equações voce ja determinou, voce quer determinar o outro lado do triangulo, que nos diz qual é a distancia entre os dois navios, recorrendo a lei dos cossenos podemos determinar por:

s^2=x^2+y^2-2.x.y.cos45^o

portanto

s(t)=\sqrt{x^2(t)+y^2(t)-2.x(t).y(t).\frac{\sqrt{2}}{2}}

s(t)=\sqrt{x^2(t)+y^2(t)-\sqrt{2}.x(t).y(t).}

a velocidade com a qual os navios se seraram é justamente a taxa de varia da distancia entre eles portano

v=\frac{ds(t)}{dt}

aplicando na função de s(t) teremos

\frac{ds(t)}{dt}=\frac{1}{2}.\frac{1}{\sqrt{x^2(t)+y^2(t)-\sqrt{2}.x(t).y(t)}}.\left(2x(t).\frac{dx}{dt}+2.y(t).\frac{dy}{dt}-\sqrt{2}y(t).\frac{dx}{dt}-\sqrt{2}.x(t).\frac{dy}{dt}\right)

substituindo pelas posições x(t) e y(t) que voce ja determinou e pelas velocidades \frac{dx}{dt} e \frac{dy}{dt} que voce tambem conhece se chega a velocidade de afastamento dos navios
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada Implícita

Mensagempor ariclenesmelo » Qui Out 25, 2012 21:54

f(x)=\frac{2*600*20+2*90*15-\sqrt{2}*600*15-\sqrt{2}*90*20}{2*\sqrt{600^2+90^2-\sqrt{2}*600*90}}
Cheguei nessa conta, sei que o resultado esta correto, porém estou com dificuldades de desenvolver.. Desculpe lhe incomodar e pq estou aprendendo sozinho, somente assistindo vídeo aulas.. desde já muito Obrigado.. O resultado da =10,57
ariclenesmelo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 21:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas para Internet
Andamento: formado

Re: Derivada Implícita

Mensagempor young_jedi » Qui Out 25, 2012 22:33

tranquilo
primeiro resolvendo as multiplicações

\frac{ds}{dt}=\frac{24000+2700-9000\sqrt{2}-1800\sqrt{2}}{2.\sqrt{360000+8100-54000\sqrt{2}}}

resolvendo as somas e subtrações possiveis

\frac{ds}{dt}=\frac{26700-10800\sqrt{2}}{2.\sqrt{368100-54000\sqrt{2}}}

substituino a raiz de dois por 1,414 aproximadamente

\frac{ds}{dt}=\frac{26700-15271,2}{2.\sqrt{368100-76356}}

resolvendo as subtrações

\frac{ds}{dt}=\frac{11428,8}{2.\sqrt{291844}}

extraindo a raiz

\frac{ds}{dt}=\frac{11428,8}{2.540,23}

resolvendo a divisão

\frac{ds}{dt}=10,57

espero que a primeira parte da derivada e da relação entre os pontos onde estão os navio e o porto tenha ficado claro.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 45 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D