• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Encontrar a equação da reta tangente

[Derivadas] Encontrar a equação da reta tangente

Mensagempor MrJuniorFerr » Qua Out 17, 2012 12:01

Estou com dúvida no seguinte exercício:

Encontre a equação da reta tangente à curva y=x^3-1, que seja perpendicular à reta y=-x.

Sei que a equação base da reta tangente é y-y0=m(x-x0) e que m é o coeficiente angular, ou seja, a derivada de uma função em certo ponto. Para encontrar m, eu derivei o y, ficando:
y'=3x^2, mas como não tenho um ponto específico, não sei achar o valor de m (coeficiente angular).
Sei pegar um ponto desta reta, seria: P(1,-1).
Como faço pra prosseguir com o exercício?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Derivadas] Encontrar a equação da reta tangente

Mensagempor MarceloFantini » Qua Out 17, 2012 12:21

Se a reta tangente será perpendicular à reta y=-x, então seu coeficiente angular será 1. Para perceber isto, lembre-se do fato que m_r \cdot m_s = -1, onde r,s são retas perpendiculares.

Agora, sabemos que o coeficiente angular será dado pela derivada, logo y' = 3x^2 = 1, assim x = \pm \frac{1}{\sqrt{3}}. Logo teremos que a reta tangente à curva será perpendicular em dois pontos distintos.

Conclua as duas equações da reta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.