• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada direcional

Derivada direcional

Mensagempor barbara-rabello » Seg Out 15, 2012 20:40

Seja a função f(x,y,z) abaixo:
\frac{x^3}{(x^2)+(y^2)+(z^2)}, se (x,y,z) \neq (0,0,0,)

0, se (x,y,z)= (0,0,0)

e $\overrightarrow{u} = (\frac{2}{3},\frac{1}{3},\frac{2}{3})

Como calculo a derivada direcional fora da origem?
Só consegui calcular na origem (usando a definição de derivada) e achei \frac{1}{9} como resposta,
mas não sei como calcular fora da origem.
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivada direcional

Mensagempor MarceloFantini » Seg Out 15, 2012 21:57

A derivada direcional é definida como D_v f = \nabla f(x,y,z) \cdot \vec{v}, ou seja, a projeção do gradiente na direção do vetor \vec{v}. Não sei como você calculou na origem, mas o enunciado não parece estar completo. Qual é o ponto que você quer encontrar a derivada direcional?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada direcional

Mensagempor young_jedi » Seg Out 15, 2012 22:00

a derivada direcional é dada pelo produto escalar do vetor gradiente pelo vetor direção

\nabla f.\overrightarrow{u}=

\left(\frac{\partial f}{\partial x}\^i+\frac{\partial f}{\partial y}\^j+\frac{\partial f}{\partial z}\^k\right).\overrightarrow{u}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada direcional

Mensagempor barbara-rabello » Ter Out 16, 2012 16:39

O enunciado é só isso mesmo, ele não fala de ponto.

Na origem \lim_{h\rightarrow0} \frac{f(0,0,0 + h$\overrightarrow{u})-f(0,0,0)}{h},

que fica f\left(\frac{h}{3},\frac{2h}{3},\frac{2h}{3} \right)

Me desculpa, o vetor certo é: $\overrightarrow{u})=\left(\frac{1}{3},\frac{2}{3},\frac{2}{3} \right)
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivada direcional

Mensagempor barbara-rabello » Ter Out 16, 2012 16:40

Me desculpem, na fórmula do limite, aquele 'h' com risco em cima é na verdade o denominador, saiu errado!!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivada direcional

Mensagempor young_jedi » Ter Out 16, 2012 19:37

talvez o exercicio so peça para calcular o produto escalar do vetor gradiente pelo vetor \overrightarrow{u}, e deixar em função de x, y e z, para encontrar a derivada direcional em qualquer ponto seria so substituir os pontos dai.
Se voce quiser colocar o enunciado exatamente como ele esta para agente dar uma olhada...
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada direcional

Mensagempor barbara-rabello » Qua Out 17, 2012 12:47

Então, o enunciado é esse:

Seja a função f(x,y,z) abaixo:

\frac{x^3}{x^2+y^2+z^2}, se (x,y,z) [tex]\neq (0,0,0)

0, se (x,y,z) = (0,0,0)
e $\overrightarrow{u}=\left(\frac{1}{3},\frac{2}{3},\frac{2}{3} \right)
Calcule \frac{\partial f}{\partial \overrightarrow{u}}\ para (xo,yo,zo)[\tex] \neq[\tex] 0.
Calcule \frac{\partial f}{\partial \overrightarrow{u}}\ (0,0,0)
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivada direcional

Mensagempor barbara-rabello » Qua Out 17, 2012 12:47

Me desculpem, aparedeu um cifrão nas derivadas que não tem!!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivada direcional

Mensagempor young_jedi » Qua Out 17, 2012 19:48

Barbara-rabello

acho que é isso mesmo, o exercicio so pede pra voce calcular o produto escalar do vetor gradiente pelo vetor direção e deixar em função de x,y e z
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Derivada direcional

Mensagempor barbara-rabello » Qui Out 18, 2012 12:03

É isso mesmo, já consegui fazer. Obrigada pela ajuda!!!!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 31 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D