• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação da reta tangente

Equação da reta tangente

Mensagempor Cleyson007 » Ter Set 25, 2012 16:17

Ache uma equação da reta tangente à curva y = 2x² + 3 que é paralela à reta 8x - y + 3 = 0.

Bom, sei que a equação da reta tangente à curva é obtida por: \lim_{\Delta\,x\rightarrow0}\frac{f(x+\Delta\,x)-f(x)}{\Delta\,x}

Resolvendo, encontro: f ' = 4x.

Para que a reta tangente seja paralela terá que ter o mesmo coeficiente angular. Correto?

Como prosseguir?

No aguardo.

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1212
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação da reta tangente

Mensagempor young_jedi » Ter Set 25, 2012 16:30

reescrenvo a equação da reta

y&=&8x+3

sendo assimo coeficiente angular é igual a 8

então

4x=8

encontrando x voce encontra o ponto em que a reta paralela é tangente a cruva dai para encontrar o resto da equação é so substituição.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equação da reta tangente

Mensagempor Russman » Ter Set 25, 2012 21:21

Uma reta tangente a curva y = 2x^2 + 3 no ponto (x,y) tem incinação 4x.

Se você procura uma reta tangente a curva y que seja paralela a reta 8x-y+3=0 então esta deve ter inclinação igual a 8, pois esta é a inclinação dessa reta.

Assim, 4x=8 e , portanto, x=2.

Logo a reta tangente a curva y é da forma 8x+c tal que

8.2+c = 2.(2)^2 + 3 \Rightarrow 16+c =8 + 3\Rightarrow c = -5

A reta procurada é y = 8x  -5.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.


cron