• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo, Integral, e^x

Calculo, Integral, e^x

Mensagempor bahcore » Qui Set 20, 2012 04:54

Já tentei várias vezes mas não consigo resolver. Podem me ajudar?

No início dos anos 90, a taxa de consumo mundial de petróleo cresceu exponencialmente. Seja C(t) a taxa de consumo de petróleo no instante t, onde t é o número de anos contados a partir do início de 1990. Um modelo aproximado para C(t) é dado por: C(t)=16,1.e^0,07t. Qual das alternativas a baixo responde corretamente a quantidade de petróleo consumida entre 1992 e 1994?

A) 56,43 bilhões de barris de petróleo.
B) 48,78 bilhões de barris de petróleo.
C) 39,76 bilhões de barris de petróleo.
D) 26,54 bilhões de barris de petróleo.
E) Nenhuma das alternativas.

Por favor, me enviem a resolução do problema, e não somente a resposta.

Fico muito grata pela ajuda!!!
bahcore
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Set 20, 2012 04:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Calculo, Integral, e^x

Mensagempor young_jedi » Qui Set 20, 2012 12:06

visto que é dado a taxa de consumo o consumo sera dado pela integral no periodo de interesse
repare que como o tempo é dado a partir de 1990 e então o intervalo da intergral sera de 2 a 4

\int_{2}^{4}16,1.e^{0,07.t}dt

\left|16,1.\frac{e^{0,07.t}}{0,07}\right|_{t=2}^{t=4}

calculando chega-se a resposta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}