• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Exercicio de Limite

[Limite] Exercicio de Limite

Mensagempor will94 » Sex Set 14, 2012 13:41

A principio dá uma indeterminação, mas que não consegui proceder de outras maneiras que não desse outra indeterminação
A resposta que tá no gabarito é 1/4

\lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3}

Obrigado desde já ;)
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Limite] Exercicio de Limite

Mensagempor mih123 » Sex Set 14, 2012 14:15

Olá, costumo fazer dessa maneira:

\frac{\sqrt[2]{1+x}-2}{x-3}.\frac{(\sqrt[2]{1+x}+2).(x+3)}{(x+3)(\sqrt[2]{1+x}+2)}

Fazendo as multiplicações,fica assim:

\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}

Ai, sobra :
\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}

Substituindo o x por 3, a resposta será 1/4.
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Limite] Exercicio de Limite

Mensagempor will94 » Sex Set 14, 2012 19:55

mih123 escreveu:Olá, costumo fazer dessa maneira:

\frac{\sqrt[2]{1+x}-2}{x-3}.\frac{(\sqrt[2]{1+x}+2).(x+3)}{(x+3)(\sqrt[2]{1+x}+2)}

Fazendo as multiplicações,fica assim:

\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}

Ai, sobra :
\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}

Substituindo o x por 3, a resposta será 1/4.



Muito obrigado, conversei com meu professor hoje e ele disse pra eu tentar dessa forma!
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 33 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)