• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Módulo da derivada

Módulo da derivada

Mensagempor dina ribeiro » Qua Set 05, 2012 17:40

Boa tarde!

Estou tentando achar o módulo da deriravada da equação, mas minha resposta está diferente do "solution" do livro do Stewart

r(t)=t^2i+2tj+lntk
r'(t)=2ti+2j+\frac{1}{t}k
\left|r'(t) \right|=\sqrt[]{{4t}^{2}+4+\frac{1}{{t}^{2}}}

A resposta não seria =2t+2+\frac{1}{t} ?????

Porque a resposta é \frac{1+{2t}^{2}}{t} ????? Porque a raíz de 4 some?


Obrigada!!!
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Módulo da derivada

Mensagempor Russman » Qua Set 05, 2012 19:08

Se um vetor v tem componentes (a,b,c), isto é, v = ai + bj + ck, então seu módulo é a quantidade \sqrt[]{a^2+b^2+c^2}.

Você deve selecionar as componentes uma a uma e elevá-las ao quadrado. Depois some-as e calcule a raíz quadrada positiva.

Veja que?

(2t)^2 = 4t^2

(2)^2 = 4

\left( \frac{1}{t} \right)^2=\frac{1}{t^2}

Assim, o módulo da derivada de r(t) será \sqrt[]{4t^2 + 4 + \left(\frac{1}{t^2} \right)}=\sqrt[]{\frac{4t^4+4t^2+1}{t^2}} = \frac{1}{t}\sqrt[]{(2t^2 + 1)^2}=\frac{1}{t}\left(2t^2+1 \right).

Confere com o gabarito.

Note que 4t^4 + 4t^2 + 1 = (2t^2 + 1)^2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Módulo da derivada

Mensagempor LuizAquino » Qua Set 05, 2012 19:20

dina ribeiro escreveu:Estou tentando achar o módulo da deriravada da equação, mas minha resposta está diferente do "solution" do livro do Stewart

r(t)=t^2i+2tj+lntk
r'(t)=2ti+2j+\frac{1}{t}k
\left|r'(t) \right|=\sqrt[]{{4t}^{2}+4+\frac{1}{{t}^{2}}}

A resposta não seria =2t+2+\frac{1}{t} ?????


Na sua resposta você cometeu um erro: achar que \sqrt{a^2+b^2+c^2} é o mesmo que a + b + c. Isso é falso! Veja um exemplo.

De um lado, temos que:

\sqrt{1 + 4 + 16} = \sqrt{21}

E por outro lado, temos que:

1 + 2 + 4 = 7

Note então que \sqrt{1 + 4 + 16} \neq 1 + 2 + 4 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?