• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Módulo da derivada

Módulo da derivada

Mensagempor dina ribeiro » Qua Set 05, 2012 17:40

Boa tarde!

Estou tentando achar o módulo da deriravada da equação, mas minha resposta está diferente do "solution" do livro do Stewart

r(t)=t^2i+2tj+lntk
r'(t)=2ti+2j+\frac{1}{t}k
\left|r'(t) \right|=\sqrt[]{{4t}^{2}+4+\frac{1}{{t}^{2}}}

A resposta não seria =2t+2+\frac{1}{t} ?????

Porque a resposta é \frac{1+{2t}^{2}}{t} ????? Porque a raíz de 4 some?


Obrigada!!!
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Módulo da derivada

Mensagempor Russman » Qua Set 05, 2012 19:08

Se um vetor v tem componentes (a,b,c), isto é, v = ai + bj + ck, então seu módulo é a quantidade \sqrt[]{a^2+b^2+c^2}.

Você deve selecionar as componentes uma a uma e elevá-las ao quadrado. Depois some-as e calcule a raíz quadrada positiva.

Veja que?

(2t)^2 = 4t^2

(2)^2 = 4

\left( \frac{1}{t} \right)^2=\frac{1}{t^2}

Assim, o módulo da derivada de r(t) será \sqrt[]{4t^2 + 4 + \left(\frac{1}{t^2} \right)}=\sqrt[]{\frac{4t^4+4t^2+1}{t^2}} = \frac{1}{t}\sqrt[]{(2t^2 + 1)^2}=\frac{1}{t}\left(2t^2+1 \right).

Confere com o gabarito.

Note que 4t^4 + 4t^2 + 1 = (2t^2 + 1)^2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Módulo da derivada

Mensagempor LuizAquino » Qua Set 05, 2012 19:20

dina ribeiro escreveu:Estou tentando achar o módulo da deriravada da equação, mas minha resposta está diferente do "solution" do livro do Stewart

r(t)=t^2i+2tj+lntk
r'(t)=2ti+2j+\frac{1}{t}k
\left|r'(t) \right|=\sqrt[]{{4t}^{2}+4+\frac{1}{{t}^{2}}}

A resposta não seria =2t+2+\frac{1}{t} ?????


Na sua resposta você cometeu um erro: achar que \sqrt{a^2+b^2+c^2} é o mesmo que a + b + c. Isso é falso! Veja um exemplo.

De um lado, temos que:

\sqrt{1 + 4 + 16} = \sqrt{21}

E por outro lado, temos que:

1 + 2 + 4 = 7

Note então que \sqrt{1 + 4 + 16} \neq 1 + 2 + 4 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59