• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Dupla e inversao

Integral Dupla e inversao

Mensagempor ivoski » Ter Ago 14, 2012 18:12

Quando por uma integral dupla se calculou o volume do solido sob a surficie z = f(x,y), e acima da regiao D do plano xy, obteve-se a seguinte soma de integrais repetidas:
V =\int_{1}^2 \int_{x}^{x^3} f(x,y)\ dy dx \ + \int_{2}^8 \int_{x}^8 f(x,y)\ dy dx

a) Esboce a regiao D e exprima V por uma integral repetida na ordem de intergração invertida.

b) Calcule V para f(x,y) = e^y \left(\frac{x}{y} \right)^{1/2}
ivoski
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Ago 14, 2012 17:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Integral Dupla e inversao

Mensagempor LuizAquino » Qui Ago 23, 2012 18:32

ivoski escreveu:Quando por uma integral dupla se calculou o volume do solido sob a surficie z = f(x,y), e acima da regiao D do plano xy, obteve-se a seguinte soma de integrais repetidas:
V =\int_{1}^2 \int_{x}^{x^3} f(x,y)\ dy dx \ + \int_{2}^8 \int_{x}^8 f(x,y)\ dy dx

a) Esboce a regiao D e exprima V por uma integral repetida na ordem de intergração invertida.

b) Calcule V para f(x,y) = e^y \left(\frac{x}{y} \right)^{1/2}


Vejamos o item a). A figura abaixo ilustra a região D.

figura.png
figura.png (36.07 KiB) Exibido 1016 vezes


Veja que todo o trabalho se resumiu a determinar a região delimitada pelos gráficos de f(x) = x^3 , g(x) = x e h(x) = 8 .

Analisando agora na ordem de integração invertida, precisamos escrever D no formato:

D = \{(x,\,y)\,|\,a\leq y \leq b ,\, f_1(y)\leq x \leq f_2(y)\}

Analisando a figura acima, note que 1\leq y \leq 8 . Além disso, note que x está delimitado a esquerda pelo gráfico de f_1(y) = \sqrt[3]{y} . Por outro lado, x está delimitado a direita pelo gráfico de f_2(y) = y . Desse modo, temos que:

D = \{(x,\,y)\,|\,1\leq y \leq 8 ,\, \sqrt[3]{y}\leq x \leq y\}

Podemos então escrever que:

V = \int_1^8\int_{\sqrt[3]{y}}^{y} f(x,\,y)\,dx\,dy

Agora tente resolver o item b).
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.