• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Dupla e inversao

Integral Dupla e inversao

Mensagempor ivoski » Ter Ago 14, 2012 18:12

Quando por uma integral dupla se calculou o volume do solido sob a surficie z = f(x,y), e acima da regiao D do plano xy, obteve-se a seguinte soma de integrais repetidas:
V =\int_{1}^2 \int_{x}^{x^3} f(x,y)\ dy dx \ + \int_{2}^8 \int_{x}^8 f(x,y)\ dy dx

a) Esboce a regiao D e exprima V por uma integral repetida na ordem de intergração invertida.

b) Calcule V para f(x,y) = e^y \left(\frac{x}{y} \right)^{1/2}
ivoski
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Ago 14, 2012 17:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Integral Dupla e inversao

Mensagempor LuizAquino » Qui Ago 23, 2012 18:32

ivoski escreveu:Quando por uma integral dupla se calculou o volume do solido sob a surficie z = f(x,y), e acima da regiao D do plano xy, obteve-se a seguinte soma de integrais repetidas:
V =\int_{1}^2 \int_{x}^{x^3} f(x,y)\ dy dx \ + \int_{2}^8 \int_{x}^8 f(x,y)\ dy dx

a) Esboce a regiao D e exprima V por uma integral repetida na ordem de intergração invertida.

b) Calcule V para f(x,y) = e^y \left(\frac{x}{y} \right)^{1/2}


Vejamos o item a). A figura abaixo ilustra a região D.

figura.png
figura.png (36.07 KiB) Exibido 1151 vezes


Veja que todo o trabalho se resumiu a determinar a região delimitada pelos gráficos de f(x) = x^3 , g(x) = x e h(x) = 8 .

Analisando agora na ordem de integração invertida, precisamos escrever D no formato:

D = \{(x,\,y)\,|\,a\leq y \leq b ,\, f_1(y)\leq x \leq f_2(y)\}

Analisando a figura acima, note que 1\leq y \leq 8 . Além disso, note que x está delimitado a esquerda pelo gráfico de f_1(y) = \sqrt[3]{y} . Por outro lado, x está delimitado a direita pelo gráfico de f_2(y) = y . Desse modo, temos que:

D = \{(x,\,y)\,|\,1\leq y \leq 8 ,\, \sqrt[3]{y}\leq x \leq y\}

Podemos então escrever que:

V = \int_1^8\int_{\sqrt[3]{y}}^{y} f(x,\,y)\,dx\,dy

Agora tente resolver o item b).
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.