• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor RodrigoMan » Qui Jul 12, 2012 10:53

Tento aplicar a fórmula de Baskara mas as raizes não coincidem na simplificação. \lim_{x\rightarrow1}\frac{t^2+t-2}{t^2-3t+2}
A resposta é -3.
RodrigoMan
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 06, 2012 13:28
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jul 12, 2012 11:21

Simples, basta simplificar

\lim_{x\rightarrow1}\frac{t^2+t-2}{t^2-3t+2}
\lim_{x\rightarrow1}\frac{(t-1)(t+2)}{(t-1)(t-2)}
\lim_{x\rightarrow1}\frac{(t+2)}{(t-2)}\Rightarrow \frac{-3}{1}= -3
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor RodrigoMan » Qui Jul 12, 2012 11:46

Muito obrigado. Realmente o problema era o jogo de sinais das raízes. Agora entendo o meu erro. Valeu.
RodrigoMan
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 06, 2012 13:28
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jul 12, 2012 11:53

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.