• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Máximo & Minimo]

[Máximo & Minimo]

Mensagempor allakyhero » Sáb Jun 30, 2012 12:41

Bom dia a todos!

Estou estudando "Valores Máximo e Mínimo" com auxilio de um livro, até esse momento compreendo a questão de que cavidade para cima é máximo e cavidade para baixo é mínimo etc...

Só que não compreendo como faço a resolução do problema.
Por exemplo, a questão 49 do livro.

49. f(x) = 3x² - 12x + 5, [0, 3]
f'(x) = 6x¹ - 12, [0, 3]
f'(x) = 6x - 12 = 0

Depois dai não sei o que fazer...
Alguém poderia me auxiliar?
allakyhero
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 30, 2012 12:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Máximo & Minimo]

Mensagempor Russman » Sáb Jun 30, 2012 14:41

Você deseja calcular o ponto extremo da função f(x) = 3x² - 12x + 5 ?

Para isto, derive-a. A teoria garante que a função é extrema no ponto em que f'(x) = 0. Assim,

f'(x) = 6x-12 = 0 ----> x=2.

O valor dessa função é dado tomando então, x=2.

f(x=2) = 3.2² - 12.2 + 5 = -12 + 5 = -7.

Portanto o ponto extremo dessa função é (2,-7). Como, f''(x) = 6 >0 o ponto de extremo é de mínimo pois a função é concava para baixo!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Máximo & Minimo]

Mensagempor MarceloFantini » Sáb Jun 30, 2012 18:13

Russman, você quis dizer que a função é côncava para cima, certo? Se fosse côncava para baixo seria um ponto de máximo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Máximo & Minimo]

Mensagempor Russman » Sáb Jun 30, 2012 18:40

MarceloFantini escreveu:Russman, você quis dizer que a função é côncava para cima, certo? Se fosse côncava para baixo seria um ponto de máximo.


Isso, isso. Troquei as palavras. k
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Máximo & Minimo]

Mensagempor allakyhero » Dom Jul 01, 2012 00:43

Russman, Obrigado

Poderia me explicar porque "x = 2" ?
allakyhero
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 30, 2012 12:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Máximo & Minimo]

Mensagempor LuizAquino » Dom Jul 01, 2012 10:18

Russman escreveu:A teoria garante que a função é extrema no ponto em que f'(x) = 0.


Cuidado! A teoria não garante isso.

Por exemplo, para a função f(x) = (x - 1)^3 temos que f^\prime(1) = 0. Entretanto, no ponto x = 1 não temos nem máximo e nem mínimo para essa função.

O correto seria dizer algo como: "a teoria garante que a função pode ser extrema no ponto em que f'(x) = 0".

Observe que "pode ser" e "é" são coisas bem distintas!

allakyhero escreveu:Estou estudando "Valores Máximo e Mínimo" com auxilio de um livro, até esse momento compreendo a questão de que cavidade para cima é máximo e cavidade para baixo é mínimo etc...

Só que não compreendo como faço a resolução do problema.
Por exemplo, a questão 49 do livro.

49. f(x) = 3x² - 12x + 5, [0, 3]
f'(x) = 6x¹ - 12, [0, 3]
f'(x) = 6x - 12 = 0

Depois dai não sei o que fazer...
Alguém poderia me auxiliar?


Observe que o exercício lhe forneceu uma função (no caso, f(x) = 3x² - 12x + 5) e um intervalo (no caso, [0, 3]).

Nesse contexto, a ideia é usar o chamado "Método do Intervalo Fechado" para resolver o exercício. Para saber mais a respeito desse método, eu gostaria de recomendar que você assista a videoaula "19. Cálculo I - Máximo e Mínimo de Funções". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino

Quanto a última passagem que você postou, perceba que:

6x - 12 = 0 \implies 6x = 12 \implies x = \frac{12}{6} \implies x = 2

Como você exibiu dúvidas na resolução dessa equação, eu aproveito para recomendar que você assista também a videoaula "Matemática Zero - Aula 13 - Equação do Primeiro Grau". Ela esta disponível no canal do Nerckie no YouTube:

http://www.youtube.com/nerckie

Eu espero que as videoaulas indicas possam lhe ajudar a tirar suas dúvidas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Máximo & Minimo]

Mensagempor allakyhero » Dom Jul 01, 2012 11:06

LuizAquino, agradeço pela ajudá e pelos links do youtube.
Abraço!
allakyhero
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 30, 2012 12:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 92 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D